Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
S = 2 + 22 + 23 +........+ 2100
=> S = (2+23) + (22+24) +............+ (298+2100)
S = 2(1+22) + 22(1+22) +.......... + 298(1+22)
S = (1+22).(2+22+.......+298)
S=5.(2+22+.......+298) chia hết cho 5 (đpcm)
Vậy S chia hết cho 5
b) Ta có
4a+3b=4a+7b-4b=4(a-b)+7b
Vì a-b chia hết cho 7 nên 4(a-b) chia hết cho 7 và 7b chia hết cho 7(vì có 1 thừa số là 7) nên 4(a-b)+7b chia hết cho 7
=>4a+3b chia hết cho 7(đpcm)
Vậy nếu a-b chia hết cho 7 thì 4a+3b sẽ chia hết cho 7.
\(a-b⋮7\Rightarrow a⋮6,b⋮7\)
\(\Rightarrow4a⋮7;3b⋮7\)
\(\Rightarrow4a+3b⋮7\) (đpcm)
Bài 1
a/ ab+ba=10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11
b/ ab-ba=10a+b-10b-a=9a-9b=9(a-b) chia hết cho 9
Bài 2
4a+3b=(4a-4b)+7b=4(a-b)+7b
Theo đề bài a-b chia hết cho 7 nên 4(a-b) chia hết cho 7
7b chia hết cho 7
=> 4(a-b)+7b=4a+3b chia hết cho 7
\(\text{Vì }5a+3b⋮7\Rightarrow3\left(5a+3b\right)⋮7\Rightarrow15a+9b⋮7\)
\(\text{Giả sử }3a-b⋮7\Rightarrow5\left(3a-b\right)⋮7\Rightarrow15a-5b⋮7\)
\(\Rightarrow15a+9b-15a+5b⋮7\Rightarrow14b⋮7\)
\(\Rightarrow3a-b⋮7\)
\(\left(7a+3b\right)⋮23\Leftrightarrow17\left(7a+3b\right)⋮23\)(vì \(\left(17,23\right)=1\))
\(\Leftrightarrow\left(119a+51b\right)⋮23\Leftrightarrow\left(119a-5.23a+51-2.23b\right)⋮23\)
\(\Leftrightarrow\left(4a+5b\right)⋮23\)
Do ta biến đổi tương đương nên điều ngược lại cũng đúng.
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{1997}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{1997}\right)⋮2\)
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{1996}\right)⋮13\).
Mà \(\left(2,13\right)=1\)nên \(S\)chia hết cho \(2.13=26\).
Ta có : a + 5b \(⋮\) 7
=> 10a + 50 b \(⋮\) 7
10a + b + 49b \(⋮\) 7
Mà 49b \(⋮\) 7 ( vì 49 \(⋮\) 7 )
=> 10a + b \(⋮\) 7
\(3\left(A-B\right)+\left(4A+3B\right)=3A-3B+4A+3B=7A⋮7\)
Mà \(A-B⋮7\Rightarrow4A+3B⋮7\)
Gọi d là ƯC(7a+5b;4a+5b)
7a+5b chia hết cho d
4a+5b chia hết cho d
nên 28a+20b chia hết cho d
28a+21b chia hết cho d
(28a+21b)-(28a+20b) chia hết cho d
28a+21b -28a-20b chia hết cho d
1 chia hết cho d nên d=1
Ta có
a - b chia hết cho 7
=> 4( a - b ) chia hết cho 7
=> 4a - 4b chia hết cho 7
=> 4a - 7b + 3b chia hết cho 7
=> 4a + 3b - 7b chia hết cho 7
Vì - 7b chia hết cho 7
=> 4a + 3b chia hết cho 7
Vậy khi a - b chia hết cho 7 thì 4a + 3b chia hết cho 7