Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : \(4x=5y=>\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}=\frac{y-2x}{4-10}=\frac{-5}{-6}=\frac{5}{6}\)
Từ \(\frac{x}{5}=\frac{5}{6}=>x=\frac{25}{6}\)
Từ \(\frac{y}{4}=\frac{5}{6}=>y=\frac{10}{3}\)
2). 2x = 3y ; 5y = 7z
\(\Rightarrow\) \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14};\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng t/c của dãy t/s bằng nhau ta có :
\(\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\) \(\frac{3x}{63}=2\Rightarrow3x=126\Rightarrow x=126:2=42\)
\(\frac{7y}{98}=2\Rightarrow7y=196\Rightarrow y=196:7=28\)
\(\frac{5z}{50}=2\Rightarrow5z=100\Rightarrow z=100:5=20\)
Theo mình là:
a/ Theo đề ta có:
x/3=y/4 và x+y=14
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=x+y=3+4=14/7=2
Từ x/3=2=>x=2.3=6
Từ y/4=2>y=2.4=8
Vậy x=6 và y=8.
b/
Theo đề ta có:
a/7=b/9 và 3a-2b=30
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10
Từ a/7=10=>a=10.7=70
Từ b/9=10=>b/10.9=90
Vậy a=70 và b=90.
c/
Theo đề ta có:
x/3=y/4=z/5 và x-y+z=20
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=z/5=x-y+z/3-4=5=20/4=5
Từ x/3=5=>x=5.3=15
Từ y/4=5=>y=5.4=20
Từ z/5=5=>z=5.5=25
Vậy x=15,y=20 và z=25
d/
Theo đề ta có:
a/4=b/7=c/10 và 2a+3b+4c=69
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1
Từ a/4=1=>a=1.4=4
Từ b/7=1=>b=1.7=7
Từ c/10=1=>c=1.10=10
Vậy a=4,b=7 và c=10
a) x=6 y=8
b) a=70 b=90
c) x=15 y=20 z=25
d) a=4 b=7 c=10
bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)
_HT_
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5.\)
=> a=10; b=15; c=20
\(\text{Ta có :}\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau , ta có :}\)
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\\\frac{2b}{6}=5\\\frac{3c}{12}=5\end{cases}\Rightarrow}\hept{\begin{cases}a=10\\b=15\\c=20\end{cases}.}\text{Vậy a = 10; b = 15 ; c = 20}\)
Chúc bạn hok tốt :>
Ta có:
\(3x=4y\Leftrightarrow\frac{x}{4}=\frac{y}{3}\) và \(y-x=5\)
Áp dụng tính chất của dạy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=\frac{5}{1}=5\)
\(\hept{\begin{cases}\frac{x}{4}=5\Rightarrow x=5.4=20\\\frac{y}{5}=5\Rightarrow y=5.5=25\end{cases}}\)
Vậy \(x=20;y=25\)
b)
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và \(a-2b+3c=35\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a-2b+3c}{3-2.4+3.5}=\frac{35}{10}=3,5\)
\(\hept{\begin{cases}\frac{a}{3}=3,5\Rightarrow a=3,5.3=10,5\\\frac{b}{4}=3,5\Rightarrow b=3,5.4=14\\\frac{c}{5}=3,5\Rightarrow c=3,5.5=17,5\end{cases}}\)
Vậy \(a=10,5;b=14;c=17,5\)
Bài 1: \(3x=4y\Leftrightarrow y=\frac{3x}{4}\)
thay vào \(y-x=5\Leftrightarrow\frac{3x}{4}-x=5\Leftrightarrow\frac{-x}{4}=5\Leftrightarrow x=-20\Leftrightarrow y=\frac{3x}{4}=\frac{3.\left(-20\right)}{4}\)=-15
Bài 2: Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{2b}{8}=\frac{3c}{15}=\frac{a-2b+3c}{3-8+15}=\frac{35}{10}=\frac{7}{2}\)
=>\(a=\frac{7}{2}.3=\frac{21}{2};b=\frac{7}{2}.4=14;c=\frac{7}{2}.5=\frac{35}{2}\)