K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2015

2).  2x = 3y ; 5y = 7z
\(\Rightarrow\) \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14};\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng t/c của dãy t/s bằng nhau ta có :
 \(\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\) \(\frac{3x}{63}=2\Rightarrow3x=126\Rightarrow x=126:2=42\)
\(\frac{7y}{98}=2\Rightarrow7y=196\Rightarrow y=196:7=28\)
\(\frac{5z}{50}=2\Rightarrow5z=100\Rightarrow z=100:5=20\)
 

22 tháng 10 2020

a) Ta có : 2x = 3y => \(\frac{x}{3}=\frac{y}{2}\) 

7z = 5y => \(\frac{y}{7}=\frac{z}{5}\)

=> \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)

+) \(\frac{x}{3}=\frac{y}{2}\)=> \(\frac{x}{21}=\frac{y}{14}\)

+) \(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

=> \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

=> x = 2.21 = 42 , y = 2.14 = 28 , z = 2.10 = 20

b) Ta có : x : y : z = 3 : 5 : (-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\\z=-2k\end{cases}}\)

=> 5x = 15k , y = 5k , 3z = -6k

=> 5x - y + 3z = 15k - 5k + (-6k)

=> -16 = 10k - 6k

=> -16 = 4k

=> k = -4

Với k = -4 thì x = 3.(-4) = -12 , y = 5.(-4) = -20 , z = (-2).(-4) = 8

Vậy : ....

19 tháng 9 2015

minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z

+) 10x=15y=21z   ( Quy dong)

+)10x/210 = 15y/210 = 21z/210       ( BC)

+) x/21 = y/14 = z/10  ( Rut gon)

+) 3x/63 = 7y/98 =  5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2

+ x/21 = 2 => ............  phan nay minh chua xong neu xong thi minh pm not cho

6 tháng 8 2016

2x=3y,5y=7z và 3x-7y+5z=30

a) ta có: \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

Do đó: 

\(\frac{x}{17}=-3\Rightarrow x=17.\left(-3\right)=-51\)

\(\frac{y}{3}=-3\Rightarrow y=3.\left(-3\right)=-9\)

Vậy ...

b) Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{25}=\frac{100}{25}=4\)

Do đó: 

\(\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm6\)

\(\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\)

Vậy ...

c) Áp dụng t/c dãy tỉ số bằng nhau ta có:

 \(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+17y}{12+4x}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}\)

\(\Rightarrow\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)

\(\Rightarrow6+2x=5x\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

và \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\)

\(\Leftrightarrow\left(1+5y\right).8=\left(1+7y\right).10\)

\(\Rightarrow8+40y=10+70y\)

\(\Rightarrow-2=30y\)

\(\Rightarrow y=-\frac{1}{15}\)

Vậy...

hok tốt!!

8 tháng 11 2018

TH1: a+b+c  khác 0

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào B ta có:

\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)

TH2: a+b+c=0

=> c=-a-b

=>a=-b-c

=>b=-a-c

thay a,b,c vào B ta có:

\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)

\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)

p/s: th2 ko chắc nhá 

11 tháng 11 2016

a) Từ x:y:z = 3:5:(-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

=> \(\begin{cases}x=93\\y=155\\z=-62\end{cases}\)

b) Từ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3z-7y+5z}{63-98+50}=\frac{30}{15}=2\)

=> \(\begin{cases}x=42\\y=28\\z=20\end{cases}\)

11 tháng 11 2016

a) Giải:

Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

+) \(\frac{x}{3}=31\Rightarrow x=93\)

+) \(\frac{y}{5}=31\Rightarrow y=155\)

+) \(\frac{z}{-2}=31\Rightarrow z=-62\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(93;155;-62\right)\)

b) Giải:

Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

+) \(\frac{x}{21}=2\Rightarrow x=42\)

+) \(\frac{y}{14}=2\Rightarrow y=28\)

+) \(\frac{z}{10}=2\Rightarrow z=20\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(42;28;20\right)\)

13 tháng 10 2021

sai từ chỗ z/7.1/4= z/28 nha k phải 27 vì bạn làm sai nên nhg câu đó bn k ra kết quả!