K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2015

2).  2x = 3y ; 5y = 7z
\(\Rightarrow\) \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14};\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng t/c của dãy t/s bằng nhau ta có :
 \(\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\) \(\frac{3x}{63}=2\Rightarrow3x=126\Rightarrow x=126:2=42\)
\(\frac{7y}{98}=2\Rightarrow7y=196\Rightarrow y=196:7=28\)
\(\frac{5z}{50}=2\Rightarrow5z=100\Rightarrow z=100:5=20\)
 

22 tháng 10 2020

a) Ta có : 2x = 3y => \(\frac{x}{3}=\frac{y}{2}\) 

7z = 5y => \(\frac{y}{7}=\frac{z}{5}\)

=> \(\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)

+) \(\frac{x}{3}=\frac{y}{2}\)=> \(\frac{x}{21}=\frac{y}{14}\)

+) \(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

=> \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

=> x = 2.21 = 42 , y = 2.14 = 28 , z = 2.10 = 20

b) Ta có : x : y : z = 3 : 5 : (-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\\z=-2k\end{cases}}\)

=> 5x = 15k , y = 5k , 3z = -6k

=> 5x - y + 3z = 15k - 5k + (-6k)

=> -16 = 10k - 6k

=> -16 = 4k

=> k = -4

Với k = -4 thì x = 3.(-4) = -12 , y = 5.(-4) = -20 , z = (-2).(-4) = 8

Vậy : ....

19 tháng 9 2015

minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z

+) 10x=15y=21z   ( Quy dong)

+)10x/210 = 15y/210 = 21z/210       ( BC)

+) x/21 = y/14 = z/10  ( Rut gon)

+) 3x/63 = 7y/98 =  5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2

+ x/21 = 2 => ............  phan nay minh chua xong neu xong thi minh pm not cho

6 tháng 8 2016

2x=3y,5y=7z và 3x-7y+5z=30

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

11 tháng 11 2016

a) Từ x:y:z = 3:5:(-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

=> \(\begin{cases}x=93\\y=155\\z=-62\end{cases}\)

b) Từ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3z-7y+5z}{63-98+50}=\frac{30}{15}=2\)

=> \(\begin{cases}x=42\\y=28\\z=20\end{cases}\)

11 tháng 11 2016

a) Giải:

Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

+) \(\frac{x}{3}=31\Rightarrow x=93\)

+) \(\frac{y}{5}=31\Rightarrow y=155\)

+) \(\frac{z}{-2}=31\Rightarrow z=-62\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(93;155;-62\right)\)

b) Giải:

Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

+) \(\frac{x}{21}=2\Rightarrow x=42\)

+) \(\frac{y}{14}=2\Rightarrow y=28\)

+) \(\frac{z}{10}=2\Rightarrow z=20\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(42;28;20\right)\)

3 tháng 11 2017

a) Ta có: |4x - 1| - x = 15

- Nếu \(4x-1\ge0\) \(\Rightarrow x\ge\frac{1}{4}\)

=> 4x - 1 - x = 15

=> 3x = 15 + 1

=> 3x = 16

=> x = \(\frac{16}{3}\) (thỏa mãn điều kiện)

- Nếu \(4x-1< 0\Rightarrow x< \frac{1}{4}\)

=> 1 - 4x - x = 15

=> -5x = 14

=> x = \(\frac{-14}{5}\) (thỏa mãn điều kiện)

Vậy x = \(\frac{16}{3}\) hoặc x = \(\frac{-14}{5}\)

3 tháng 11 2017

Câu b hình như là đề sai rùi bạn ơi.

c) Ta có: 2x = 3y

\(\Rightarrow\) \(\frac{x}{3}=\frac{y}{2}\) \(\Rightarrow\) \(\frac{x}{21}=\frac{y}{14}\) (1)

5y = 7z

\(\Rightarrow\) \(\frac{y}{7}=\frac{z}{5}\) \(\Rightarrow\) \(\frac{y}{14}=\frac{z}{10}\) (2)

Từ (1) và (2) suy ra:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\) \(\frac{x}{21}=2\) \(\Rightarrow\) \(x=21.2=42\)

\(\Rightarrow\) \(\frac{y}{14}=2\) \(\Rightarrow\) \(y=14.2=28\)

\(\Rightarrow\)\(\frac{z}{10}=2\) \(\Rightarrow\) \(z=10.2=20\)

Vậy x = 42; y = 28; z = 20