Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
2x = 3y => 10x=15y
5y = 7z => 15y=21z
=> 10x=15y=21z =>x=2,1z
y=1,4z
Mà : 3x - 7y + 5z = 30 => 6,3z - 9,8z + 5z=30 =>1,5z=30
=>z=20
y=28
x=42
Từ \(2x=3y\)\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{7}=\frac{y}{2}.\frac{1}{7}=\frac{x}{21}=\frac{y}{14}\)( 1 )
Từ \(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}=\frac{y}{7}.\frac{1}{2}=\frac{z}{5}.\frac{1}{2}=\frac{y}{14}=\frac{z}{10}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Đặt \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=k\)
\(\Rightarrow\hept{\begin{cases}x=21k\\y=14k\\z=10k\end{cases}}\)
Thay vào \(3x+5z-7y=30\)ta có ;
\(3.21k+5.10k-7.14k=30\)
\(63k+50k-98k=30\)
\(15k=30\)
\(k=2\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=21.2\\y=14.2\\z=10.2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
2x=3y;5y=7z
=>x/3=y/2;y/7=z/5
=>x/21=x/14;y/14=z/10
=>x/21=y/14=z/10
=>3x/63=7y/98=5z/50
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
3x/63=7y/98=5z/50=3x-7y+5z/63-98+50=30/15=2
suy ra : 3x/63=2 =>3x=126 =>x=126:3=42
7y/98=2 =>7y =196 =>y=196:7=28
5z/50=2 =>5z = 100 => z=100:5=20
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)
Từ 1 và 2
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số = nhau ta có
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\frac{x}{21}=2\Rightarrow x=42\)
\(\frac{y}{14}=2\Rightarrow y=28\)
\(\frac{z}{10}=2\Rightarrow z=20\)
\(Ta\ có:\)
\(2x=3y\)
⇒\(\frac{x}{21}\)=\(\frac{y}{14}\)(1)
\(5y=7z\)
⇒\(\frac{y}{14}\)=\(\frac{z}{10}\)(2)
\(Từ\ (1)\ và\ (2)\ suy\ ra: \)\(\frac{x}{21}\)=\(\frac{y}{14}\)=\(\frac{z}{10}\)
\(Áp\ dụng\ tính\ chất\ dãy\ tỉ\ số\ bằng\ nhau\, ta\ có: \)
\(\frac{x}{21}\)=\(\frac{y}{14}\)=\(\frac{z}{10}\)=\(\frac{3x}{63}\)=\(\frac{7x}{98}\)=\(\frac{5z}{50}\)=\(\frac{3x-7y+5z}{63-98+50}\)=\(\frac{30}{15}\)=\(2\)
⇒\(\hept{\begin{cases}x=2.21\\y=2.14\\z=2.10\end{cases}}\text{⇒}\)\(\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
a) Từ x:y:z = 3:5:(-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
=> \(\begin{cases}x=93\\y=155\\z=-62\end{cases}\)
b) Từ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3z-7y+5z}{63-98+50}=\frac{30}{15}=2\)
=> \(\begin{cases}x=42\\y=28\\z=20\end{cases}\)
a) Giải:
Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
+) \(\frac{x}{3}=31\Rightarrow x=93\)
+) \(\frac{y}{5}=31\Rightarrow y=155\)
+) \(\frac{z}{-2}=31\Rightarrow z=-62\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(93;155;-62\right)\)
b) Giải:
Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
+) \(\frac{x}{21}=2\Rightarrow x=42\)
+) \(\frac{y}{14}=2\Rightarrow y=28\)
+) \(\frac{z}{10}=2\Rightarrow z=20\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(42;28;20\right)\)
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)
Do đó: x=-16; y=-24; z=-30
minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z
+) 10x=15y=21z ( Quy dong)
+)10x/210 = 15y/210 = 21z/210 ( BC)
+) x/21 = y/14 = z/10 ( Rut gon)
+) 3x/63 = 7y/98 = 5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2
+ x/21 = 2 => ............ phan nay minh chua xong neu xong thi minh pm not cho
2x=3y,5y=7z và 3x-7y+5z=30