K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2018

\(A=\sqrt{3x-5}+\sqrt{7-3x}\)

\(ĐKXĐ:\)\(\frac{5}{3}\le x\le\frac{7}{3}\)

\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)

Áp dụng BĐT Cô-si ta có :

\(A^2\le2+\left(3x-5+7-3x\right)=4\)

Dấu  =  xảy ra \(\Leftrightarrow\)\(3x-5=7-3x\Leftrightarrow x=2\)

Vậy Max \(A^2=4\)suy ra Max A = 2 khi x = 2 

16 tháng 2 2018

sửa lại đề 

\(A=\sqrt{3x-5}+\sqrt{7-3x}\)

thông cảm nha

Đã từng lm qua nhưng ko chắc á 

\(A=\sqrt{3x-5}+\sqrt{7-3x}\)

\(ĐKXD\)\(\frac{5}{3}\le x\le\frac{7}{3}\)

\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)

Áp dụng BĐT Cô - si Ta có : \(A^2\le2+\left(3x-5+7-3x\right)=4\)

Dấu ''='' xãy ra \(\Leftrightarrow3x-5=7-3x\Leftrightarrow x=2\)

Vậy Max A2=4 => Max A=2 khi x=2 

31 tháng 7 2019

tui đã hỉu 

cam on Kid 

có dịp giúp á á á 

7 tháng 8 2018

Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le\left(1^2+1^2\right)\left(3x-5+7-3x\right)\left(\dfrac{5}{3}\le x\le\dfrac{7}{3}\right)\)
\(\Leftrightarrow\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le4\)

\(\Leftrightarrow\sqrt{3x-5}+\sqrt{7-3x}\le2\)

\(\Rightarrow A_{Max}=2."="\Leftrightarrow x=2\left(TM\right)\)

27 tháng 7 2021

giúp mình với ahuhuuu

2 tháng 10 2016
  • \(A=\frac{3-5\sqrt{x}}{\sqrt{x}+1}=\frac{-5\left(\sqrt{x}+1\right)+8}{\sqrt{x}+1}=\frac{8}{\sqrt{x}+1}-5\)

Ta có \(\sqrt{x}+1\ge1\Rightarrow\frac{8}{\sqrt{x}+1}-5\le3\Rightarrow A\le3\)

Max A = 3 <=> x = 0

  • Không tồn tại giá trị nhỏ nhất.
AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)