Tìm số nguyên x, biết:
x + {(x + 3) - [(x + 3) - (-x - 2)]} = x
MN GIÚP MK NHA :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{y}=\frac{2}{7}\)(x, y \(\inℤ\))
=> x = 2m; y = 7m (m \(\inℤ,m\ne0\))
Ta có \(\frac{x}{y}=\frac{2}{7}\left(x,y\in Z\right)\)
\(\Rightarrow\hept{\begin{cases}x=2a\\y=7b\end{cases}}\)với \(a,b\inℤ;b\ne0\)
Ta có: x/2=y/3 =>x/8=y/12 (1)
y/4=z/5 =>y/12=z/15 (2)
Từ 1 và 2 => x/8=y/12=z/15
=> (x/8)2=(y/12)2=z/15
hay x2/64=y2/144=z/15
Áp dụng t/c của dãy tỉ số bằng nhau,có
x2/64=y2/144=z/15=(x2 - y2)/(64 - 144)= -16/-80=1/5
Khi đó: x2/64=1/5 => x2=1/5 . 64=64/5
=>x=\(\sqrt{\frac{64}{5}}\)
y2/144=1/5 => y2=144 . 1/5=144/5
=>y=\(\sqrt{\frac{144}{5}}\)
z/15 = 1/5 => z =15 . 1/5=3
mk lm sai thì thôi nha ^-^
n+2 E Ư(6)
mà Ư(6)={-1;1;2;-2;3;-3;6;-6}
=>nE{-3;-1;0;-4;1;-5;4;-8}
vậy........
vì x-y=4 nên x=4+y
ta có: x-3/y-2=3/2 <=> 4+y-3/y-2=3/2
<=> y+1/y-2=3/2 <=> (y+1).2=(y-2).3
=> 2y+2=3y-6
=> 3y-2y=6+2
=> y=8
mà x=4+y nên x=4+8=12
Vậy x=12, y=8
x-3/y-2=3/2 nên 2(x-3)= 3(y-2)
do đó 2x-6=3y-6 nên 2x=3y
=> 2x-2y=y hay 2(x-y)=y
nên 2.4=y
Vậy y=8, x= 3y/2=3.8/2=12
a/ \(\left(x-1\right)\left(y+2\right)=7\)
\(\Leftrightarrow x-1;y+2\inƯ\left(7\right)\)
Suy ra :
\(\hept{\begin{cases}x-1=1\\y+2=7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=5\end{cases}}\)
\(\hept{\begin{cases}x-1=7\\y+2=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=8\\y=-1\end{cases}}\)
\(\hept{\begin{cases}x-1=-1\\y+2=-7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=0\\y=-9\end{cases}}\)
\(\hept{\begin{cases}x-1=-7\\y+2=-1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-6\\x=-3\end{cases}}\)
Vậy ......
b/ \(x\left(y-3\right)=-12\)
\(\Leftrightarrow x;y-3\inƯ\left(-12\right)\)
Suy ra :
\(\hept{\begin{cases}x=1\\y-3=-12\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=-9\end{cases}}\)
\(\hept{\begin{cases}x=-12\\y-3=1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-12\\y=4\end{cases}}\)
\(\hept{\begin{cases}x=-1\\y-3=12\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-1\\y=15\end{cases}}\)
\(\hept{\begin{cases}x=12\\y-3=-1\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=12\\y=2\end{cases}}\)
Vậy ..
a)Ta xét: có 7 là số nguyên tố => 7= 1.7 = 7.1
\(\orbr{\begin{cases}\hept{\begin{cases}x-1=1\\y+2=7\end{cases}}\\\hept{\begin{cases}x-1=7\\y+2=1\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2\\y=5\end{cases}}\\\hept{\begin{cases}x=8\\y=-1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}\hept{\begin{cases}x-1=1\\y+2=7\end{cases}}\\\hept{\begin{cases}x-1=7\\y+2=1\end{cases}}\end{cases}}\Leftrightarrow\)\(\hept{\begin{cases}x-1=7\\y+2=1\end{cases}}\)hay \(\hept{\begin{cases}x-1=1\\y+2=7\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=8\\y=-1\end{cases}}\) hay \(\hept{\begin{cases}x=2\\y=5\end{cases}}\)
b)x(y-3)=-12
Ta có: -12=1.(-12)=2.(-6)=3.(-4)=4.(-3)=(-6).2=(-12).1
Bạn xét nghiệm theo từng cặp giá trị tương ứng (12 cặp) sẽ tìm được nghiệm
c) tương tự câu b
\(A=\frac{x^3-4x^2+4x-10}{x-3}\)( ĐKXĐ : x ≠ 3 )
\(=\frac{x^3-3x^2-x^2+3x+x-3-7}{x-3}\)
\(=\frac{x^2\left(x-3\right)-x\left(x-3\right)+\left(x-3\right)-7}{x-3}\)
\(=\frac{\left(x-3\right)\left(x^2-x+1\right)-7}{x-3}\)
\(=\frac{\left(x-3\right)\left(x^2-x+1\right)}{x-3}-\frac{7}{x-3}\)
\(=\left(x^2-x+1\right)-\frac{7}{x-3}\)
Vì x ∈ Z nên ( x2 - x + 1 ) ∈ Z
nên để A ∈ Z thì \(\frac{7}{x-3}\)∈ Z
hay ( x - 3 ) ∈ Ư(7) = { ±1 ; ±7 }
x-3 | 1 | -1 | 7 | -7 |
x | 4 | 2 | 10 | -4 |
Các giá trị tm ĐKXĐ
Vậy x ∈ { ±4 ; 2 ; 10 } thì A ∈ Z
\(ĐKXĐ:x\ne3\)
\(A=\frac{x^3-4x^2+4x-10}{x-3}=\frac{x^3-3x^2-x^2+3x+x-3-7}{x-3}\)
\(=\frac{x^2\left(x-3\right)-x\left(x-3\right)+\left(x-3\right)-7}{x-3}\)
\(=\frac{\left(x-3\right)\left(x^2-x+1\right)-7}{x-3}=\left(x^2-x+1\right)-\frac{7}{x-3}\)
Vì \(x\inℤ\)\(\Rightarrow x^2-x+1\inℤ\)
\(\Rightarrow\)Để \(A\inℤ\)thì \(\frac{7}{x-3}\inℤ\)\(\Rightarrow7⋮x-3\)
\(\Rightarrow x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow x\in\left\{-4;2;4;10\right\}\)( thỏa mãn ĐKXĐ )
Vậy \(x\in\left\{-4;2;4;10\right\}\)
\(x+\left\{\left\{x+3\right\}-\left[\left(x+3\right)-\left(-x-2\right)\right]\right\}=x\)
\(x+\left\{\left\{x+3\right\}-\left[x+3-x+2\right]\right\}=x\)
\(x+\left\{\left\{x+3\right\}-5\right\}=x\)
\(x-2=0\)
\(x=2\)
X=2 nhé bạn