K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

Ta có: x/2=y/3 =>x/8=y/12  (1)

          y/4=z/5 =>y/12=z/15  (2)

Từ 1 và 2 => x/8=y/12=z/15

         => (x/8)2=(y/12)2=z/15

      hay  x2/64=y2/144=z/15

Áp dụng t/c của dãy tỉ số bằng nhau,có

 x2/64=y2/144=z/15=(x- y2)/(64 - 144)= -16/-80=1/5

Khi đó: x2/64=1/5 => x2=1/5 . 64=64/5

                           =>x=\(\sqrt{\frac{64}{5}}\)

            y2/144=1/5 => y2=144 . 1/5=144/5

                             =>y=\(\sqrt{\frac{144}{5}}\)

            z/15 = 1/5 => z =15 . 1/5=3

  mk lm sai thì thôi nha ^-^

8 tháng 10 2017

bài 1: với x,y,z thuộc N; x<y<z ta có: 2^x + 2^y + 2^z = 2336
=> 2^z <2336
=> z nhỏ hơn hoăc 11 (1)
ta có: 2^z + 2^z + 2^z > 2^x + 2^y + 2^z 
=> 3.2^z > 2336 
=> 2^z nhỏ hơn hoặc = 778
=> z nhỏ hơn hoặc = 10 (2)
từ (1) và (2) suy ra z = {10; 11}
TH1: z = 10
=> 2^x + 2^y = 1312
=> 2^y < 1312
=> y nhỏ hơn hoặc = 10 (3)
ta có 2.2^y > 2^x + 2^y 
=> 2.2^y > 1312
=>  2^y > 656
=> y nhỏ hơn hoặc = 10 (4)
từ (3) và (4) => y = 10 mà z = 10 ( LOẠI)
TH2: z = 11

=> 2^x + 2^y = 288
=> 2^y < 288
=> y nhỏ hơn hoặc = 8 (5)
ta có 2.2^y > 2^x + 2^y 
=>2.2^y > 288
=> 2^y > 144

=> y nhỏ hơn hoặc bằng 8 (6)
từ (5) và (6) => y = 8
nhỏ hơn hoặc= 2^x + 2^8 = 288
=> 2^x = 32
=> x= 5 (chọn)
KL: vậy x = 5; y = 8; z = 11.

17 tháng 2 2019

x(y+z) - y(x-z)=xy+xz-xy +yz=xz+yz=z(z+y)

(m-n)(m+n)=m^2 -mn + mn -n^2 = m^2 - n^2

17 tháng 2 2019

a)Ta có:

x(y+z)-y(x-z)=xy+xz-xy+zy=xy-xy+xz+zy=xz+zy=z(x+y)=(x+y)z

=>x(y+z)-y(x-z)=(x+y)z                                                                                                                 đpcm

b)Ta có:

(m-n)(m+n)=mm-mn+mn-nn=m2-n2

=>(m-n)(m+n)=m2-n2                                                                                                                   đpcm

17 tháng 4 2017

KHOAN ĐÃ LỚP 6 ĐÃ HỌC HẰNG ĐẲNG THỨC SỐ 5 ĐÂU LỚP 8 MỚI HỌC MÀ

17 tháng 4 2017

Đây là đề thi học sinh giỏi môn toán cấp huyện.

22 tháng 11 2018

Đề GTLN A mình thấy nó sao sao ấy! Cần suy nghĩ thêm. Mà bạn cũng nên xem lại đề =))

\(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\)

Ta có BĐT: Với n chẵn thì: \(a^n\ge0\)

Do vậy,ta có: \(\left(x+2\right)^2\ge0\)

\(\left(y+3\right)^4\ge0\)

Do đó \(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\ge1999\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)

Vậy \(B_{min}=1999\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}\)

3 tháng 1 2017

giúp mk vs các bn ui, mai mk nộp bài rùi, mk cần gấp lắm lắm,...giúp mk nha....

21 tháng 2 2020

Chứng minh:



2/ Cho  nguyên dương. Chứng minh rằng:

21 tháng 2 2020

link mik nha