Tìm phân số tối giản \(\frac{a}{b}\)với a, b thuộc Z, b khác 0, biết
a, Cổng tử với 4, mẫu với 10 thì được phân số mới bằng phân số đã cho.
b)Cộng mẫu vào tử, cộng mẫu vào mẫu thì được một phân số mới gấp 2 lần phân số đã cho.
Ai nhanh mình tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(\frac{a}{b}=\frac{a+4}{b+10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{a+4}{b+10}=\frac{a-a-4}{b-b-10}=\frac{-4}{-10}=\frac{2}{5}\)
Vậy phân số \(\frac{a}{b}=\frac{2}{5}\)
\(b)\) Ta có :
\(\frac{2a}{b}=\frac{a+b}{b+b}\)
\(\Leftrightarrow\)\(\frac{a}{b}=\frac{a+b}{2b}:2\)
\(\Leftrightarrow\)\(\frac{a}{b}=\frac{a+b}{4b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{a+b}{4b}=\frac{a-a-b}{b-4b}=\frac{-b}{-3b}=\frac{1}{3}\)
Vậy phân số \(\frac{a}{b}=\frac{1}{3}\)
a) Theo đề bài, ta có:
\(\frac{a}{b}=\frac{a+4}{b+10}\) \(\left(1\right)\)
nên theo tính chất hai phân số bằng nhau, từ \(\left(1\right)\) ta suy ra:
\(a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow\) \(ab+10a=ab+4b\)
\(\Leftrightarrow\) \(10a=4b\)
Do đó, \(\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
b) Vì \(\frac{a+b}{2b}=\frac{2a}{b}\) \(\left(gt\right)\) nên theo tính chất hai phân số bằng nhau, ta có:
\(\left(a+b\right)b=2a.2b\)
\(\Leftrightarrow\) \(ab+b^2=4ab\)
\(\Leftrightarrow\) \(b^2=3ab\) \(\left(2\right)\)
Mà \(b\ne0\) nên từ \(\left(2\right)\) suy ra \(b=3a\) , tức là \(\frac{a}{b}=\frac{1}{3}\)
Vậy, phân số tối giản \(\frac{a}{b}\) cần tìm là \(\frac{1}{3}\)
minh chi lam dc phan a thui:
a)ta co:a+4/b+10=a/b
(a+4).b=(b+10).a
ab+4b=ba+10a
4b=10a
=)2b=5a
=)a/b=2/5
Theo đề, ta có:
\(\dfrac{a+4}{b+10}=\dfrac{a}{b}\)
=>ab+4b=ab+10a
=>4b=10a
=>4b=10a
=>b/a=10/4
hay a/b=2/5
Theo đề bài ra ta có :
\(\frac{a}{b}=\frac{a+4}{b+10}\left(1\right)\)
Nêu tính chất hai phân số bằng nhau , từ ( 1 ) =>
\(a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow ab+10a=ab+4b\)
\(\Leftrightarrow10a=4b\)
Do đó : \(\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
b ) Vì \(\frac{a+b}{2b}=\frac{2a}{b}\left(gt\right)\) nêu theo tính chất hai phân số bằng nhau , ta có :
\(\left(a+b\right)b=2a.2b\)
\(\Leftrightarrow ab+b^2=4ab\)
\(\Leftrightarrow b^2=3ab\left(2\right)\)
Mà : \(b\ne0\)nên từ ( 2 )=> \(b=3a\)tức là : \(\frac{a}{b}=\frac{1}{3}\)
Vậy phân số tối giản \(\frac{a}{b}=\frac{1}{3}\)
a) \(\frac{a}{b}=\frac{a+4}{b+10}\)
\(\Leftrightarrow a\left(b+10\right)=b\left(a+4\right)\)
\(\Leftrightarrow ab+10a=ba+4b\)
\(\Leftrightarrow10a=4b\)
\(\Leftrightarrow\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)
a, Theo bai ra , ta co :
\(\frac{a+4}{b+10}=\frac{a}{b}\)
\(\Rightarrow\left(a+4\right).b=a.\left(b+10\right)\)
\(\Rightarrow ab+4b=ab+a10\)
\(\Rightarrow4b=a10\)
\(\Rightarrow\frac{a}{b}=\frac{4}{10}=\frac{2}{5}\)