giúp mik giải bài toán mik đang cần gấp@@@
Rút gọn 219.273+15.49.94
69.210+1210
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5^2+5^3+...+5^{2015}+5^{2016}\)
\(5A=5+5^3+5^4+...+5^{2016}+5^{2017}\)
\(4A=\left(5+5^3+5^4+...+5^{2016}+5^{2017}\right)-\left(1+5^2+5^3+...+5^{2015}+5^{2016}\right)\)
\(=5+5^{2017}-\left(1+5^2\right)\)
\(=4+5^{2017}-5^2\)
\(A=\frac{4+5^{2017}-5^2}{4}\)
Ta có : 5A = 5 + 5^3 + 5^4 + ... + 5^2016 + 5^2017
=> 5A - A = ( 5 + 5^3 + 5^4 + ... + 5^2016 + 5^2017 ) - ( 1 + 5^2 + 5^3 + ... + 5^2015 + 5^2016 )
=> 4A = 4 + 5^2 + 5^2017
=> A = ( 4 + 5^2 + 5^2017 )/4
Câu 26 trang 89 Sách Bài Tập (SBT) Toán Lớp 6 tập 2
So sánh hai góc ở hình 10.
Hướng dẫn:
Cách 1: Đo riêng từng góc rồi so sánh hai số đó
Cách 2: Vẽ lại hai góc lên giấy trong. Đặt chồng hai góc sao cho đỉnh trùng nhau, một cạnh trùng nhau, hai cạnh còn lại của hai góc nằm cùng phía đối với cạnh trùng nhau rồi vận dụng kiến thức bài 5 để kết luận.
Giải
Dùng thước đo độ để đo hai góc ở hình 10 và so sánh.
Tính tổng số đo hai góc trên hình 10.
Hướng dẫn:
Cách 1: Đo riêng từng góc rồi cộng hai số đo.
Cách 2: Vẽ hai góc ở vị trí kề nhau rồi đo góc tổng.
Giải
Sử dụng thước đo độ sau đó cộng số đo hai góc.
a) Vẽ góc có đỉnh là M trên giấy cứng. Cắt ra ta được một mẫu hình.
b) Đóng hai chiếc đinh vào hai điểm A và B cách nhau 2,5 cm. Đưa mẫu hình vào khe hở giữa hai chiếc đinh sao cho một cạnh sát A, một cạnh sát B. Khi đó đỉnh M của góc ở vị trí \(M_1\). Đặt mẫu hình nhiều lần để được nhiều vị trí \(M_1,M_2,M_3\).. khác nhau của đỉnh M. Vậy ta có:
\(\widehat{AM_1B}=\widehat{AM_2B}=\widehat{AM_3B}=...=40^o\)
Đánh dấu khoảng 10 vị trí khác nhau của đỉnh M và dự đoán quỹ đạo của đỉnh M (hình 11)
Giải
b) Quỹ đạo của điểm M được gọi là "cung chứa góc \(40^o\)
Bài 29 tự làm,có trong sách mà bạn
Bài 26 trang 89 Toán 6
So sánh hai góc ở hình 10.
Hướng dẫn: Cách 1: Đo riêng từng góc rồi so sánh hai số đó
Cách 2: Vẽ lại hai góc lên giấy trong. Đặt chồng hai góc sao cho đỉnh trùng nhau, một cạnh trùng nhau, hai cạnh còn lại của hai góc nằm cùng phía đối với cạnh trùng nhau rồi vận dụng kiến thức bài 5 để kết luận.
Giải: Dùng thước đo độ để đo hai góc ở hình 10 và so sánh.
Bài 27 trang 89
Tính tổng số đo hai góc trên hình 10.
Hướng dẫn:
Cách 1: Đo riêng từng góc rồi cộng hai số đo.
Cách 2: Vẽ hai góc ở vị trí kề nhau rồi đo góc tổng.
Giải: Sử dụng thước đo độ sau đó cộng số đo hai góc.
Bài 28 Toán 6
a) Vẽ góc có đỉnh là M trên giấy cứng. Cắt ra ta được một mẫu hình.
b) Đóng hai chiếc đinh vào hai điểm A và B cách nhau 2,5 cm. Đưa mẫu hình vào khe hở giữa hai chiếc đinh sao cho một cạnh sát A, một cạnh sát B. Khi đó đỉnh M của góc ở vị trí M1M1. Đặt mẫu hình nhiều lần để được nhiều vị trí M1,M2,M3M1,M2,M3, … khác nhau của đỉnh M. Vậy ta có:
ˆAM1B=ˆAM2B=ˆAM3B=…=400AM1B^=AM2B^=AM3B^=…=400
Đánh dấu khoảng 10 vị trí khác nhau của đỉnh M và dự đoán quỹ đạo của đỉnh M (hình 11)
HD: b) Quỹ đạo của điểm M được gọi là “cung chứa góc 400400.
29a) Ta có hình vẽ
b) Vì ˆARNARN^ và ˆSRNSRN^ kề bù nên:
ˆARN+ˆSRN=180OARN^+SRN^=180O
Thay ˆSRN=130OSRN^=130O ta có:
ˆARN+130O=180OARN^+130O=180O
⇒ˆARN=180O–130O=50O⇒ARN^=180O–130O=50O
Vì ˆARMARM^ và ˆMRSMRS^ kề bù nên:
ˆARM+ˆMRS=180OARM^+MRS^=180O
Thay ˆARM=130OARM^=130O ta có:
130O+ˆMRS=180O130O+MRS^=180O
⇒ˆMRS=180O–130O=50O⇒MRS^=180O–130O=50O
Vì hai tia RN và RM nằm trên cùng môt nửa mặt phẳng bờ chứa tia RA
ˆARN=50O;ˆARM=130OARN^=50O;ARM^=130O suy ra ˆARN<ˆARMARN^<ARM^
Nên tia RN nằm giữa hai tia RA và RM
⇒ˆARN+ˆMRN=ˆARM⇒ARN^+MRN^=ARM^. Thay ˆARN=50O;ˆARM=130OARN^=50O;ARM^=130O ta có:
50O+ˆMRN=130O50O+MRN^=130O
⇒ˆMRN=130O–50O=80O
\(\frac{375}{10}=\frac{375:5}{10:5}=\frac{75}{2}\)
@muối
\(\left|x+1\right|và\left|x+2\right|\ge0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)+\left(x+2\right)=3\\\left(x+1\right)+\left(x+2\right)=-3\end{cases}}\)
\(\orbr{\begin{cases}2x+3=3\\2x+3=-3\end{cases}}\)
\(\orbr{\begin{cases}2x=0\\2x=-6\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
\(\left|x+1\right|+\left|x+2\right|=3\)
Xét \(x+1\ge0;x+2\ge0\Leftrightarrow x\ge-1;x\ge-2\Rightarrow x\ge-1\) ta có : \(\hept{\begin{cases}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=3\Leftrightarrow x+1+x+2=3\Leftrightarrow2x+3=3\Rightarrow x=0\)(TM)
Xét \(x+1\le0;x+2\ge0\Leftrightarrow-2\le x\le-1\) ta có : \(\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x+2\right|=x+2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=3\Leftrightarrow-x-1+x+2=3\Leftrightarrow1=3\) (loại)
Xét \(x+1\le0;x+2\le0\Leftrightarrow x\le-1;x\le-2\Leftrightarrow x\le-2\) ta có : \(\hept{\begin{cases}\left|x+1\right|=-x-1\\\left|x+2\right|=-x-2\end{cases}}\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|=-x-1-x-2=-2x-3=3\Rightarrow x=-3\)(TM)
Vậy \(x=\left\{-3;0\right\}\)
\(\frac{2^3.3}{2^2.3^2.5}=\frac{2}{3.5}=\frac{2}{15}\)
Thiếu dấu nhân ở chỗ \(2^2.3^2\)nha
Ta có :
\(\left(a+b+c\right)\left(a+b+c\right)-2\left(ab+bc+ca\right)\)
\(=a^2+ab+ac+ba+b^2+bc+ca+cb+c^2-2ab-2bc-2ca\)
\(=\left(a^2+b^2+c^2\right)+\left(ab+ac+ba+bc+ca+cb-2ab-2bc-2ca\right)\)
\(=a^2+b^2+c^2\)
\(\left(a+b+c\right).\left(a+b+c\right)-2.\left(a.b+b.c+c.a\right)\)
\(=a^2+b^2+c^2-\left(2ab+2bc+2ca\right)\)
\(=a^2+b^2+c^2-2ab-2bc-2ca\)
\(=a^2-2ab+b^2-2bc+c^2-2ca\)
\(=\left(a-2b\right)a+\left(b-2c\right)b+\left(c-2a\right)c\)
Chúc bn học tốt
Tham khảo e nhé!
Tiếng trống trường vang lên rộn rã, báo hiệu giờ ra chơi của chúng em đã đế. Sân trường đang lặng thinh, im ắng bỗng trở nên rộn rã bởi tiếng cười, tiếng nói của các cô cậu học trò. Góc ghế đá sân trường, các bạn nữ ngồi thầm thì nhỏ to với những câu chuyện vui vẻ. Rất nhiều bạn học sinh khác chọn không gian ở căng tin canh sân trường để tranh thủ ăn sáng hoặc cùng ngồi uống nước, nghỉ ngơi sau giờ học căng thẳng. Rộn ràng nhất là góc sân trường, mọi người đang tổ chức rất nhiều trò chơi vui nhộn. Nhảy dây. Kéo co. Chơi bóng rổ. Tất cả tạo nên một bức tranh nhộn nhịp, vui tươi về giờ ra chơi dưới sân trường.
Câu rút gọn: Nhảy dây. Kéo co. Chơi bóng rổ.