chứng tỏ mọi phân số có dạng n+3/2n+7 là phân số tối giản với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(n+1;2n+3=d\)
\(n+1⋮d\Rightarrow2n+2\)(1)
\(2n+3⋮d\)(2)
Lấy 2 - 1 ta có :
\(2n+3-2n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được
Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)
Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản
Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)
Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)
Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.
Đặt \(\left(2n+2018,2n+2019\right)=d\)
\(\Leftrightarrow\hept{\begin{cases}\left(2n+2019\right)⋮d\\\left(2n+2018\right)⋮d\end{cases}}\)
\(\Leftrightarrow\left[\left(2n+2019\right)-\left(2n+2018\right)\right]⋮d\)
\(\Leftrightarrow\left[2n+2019-2n-2018\right]⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\left(2n+2018,2n+2019\right)=1\)hay \(\frac{2n+2018}{2n+2019}\) là phân số tối giản
Gọi \(ƯCLN\left(n+1;2n+3\right)\)là d.Ta có:
\(n+1⋮d\Rightarrow2n+2⋮d\)
\(2n+3⋮d\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy p/s tối giản
Gọi d là USC của (n+1; 2n+3)
=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\) <=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\)<=> \(\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
<=> [(2n+3)-(2n+2)]\(⋮\)d <=> 1\(⋮\)d => d=1
Vậy USCLN của (n+1; 2n+3) là 1 => số có dạng \(\frac{n+1}{2n+3}\)là phân số tối giản
Giải:
Gọi ƯCLN (2n+3;3n+5)=d
Ta có:
2n+3:d =>3. (2n+3):d
3n+5:d=> 2. (3n+5):d
=> [3. (2n+3) - 2.(3n+5)]:d
=>(6n+9 - 6n-10): d
=> -1:d
=> d={1,-1}
Tick mình nha
gọi d là ƯC(n+3;2n+7) (1)
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+7⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+6⋮d\\2n+7⋮d\end{cases}}\)
\(\Rightarrow\left(2n+7\right)-\left(2n+6\right)⋮d\)
\(\Rightarrow2n+7-2n-6⋮d\)
\(\Rightarrow\left(2n-2n\right)+\left(7-6\right)⋮d\)
\(\Rightarrow0+1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\) (2)
\(\left(1\right)\left(2\right)\RightarrowƯC\left(n+3;2n+7\right)=\left\{-1;1\right\}\)
vậy \(\frac{n+3}{2n+7}\) là p/s tối giản \(\forall n\in N\)
Gọi d \(\in\)ƯC ( n + 3 ; 2n + 7 )
Theo bài ra ta có :
n + 3 \(⋮\)d ; 2n + 7 \(⋮\)d
=> 2 ( n + 3 ) \(⋮\)d ; 2n + 7 \(⋮\)d
=> 2n + 6 \(⋮\)d ; 2n + 7 \(⋮\)d
=> ( 2n + 7 ) - ( 2n + 6 ) \(⋮\)d
=> 1 \(⋮\)d
Vậy \(\frac{n+3}{2n+7}\)là phân số tối giản với n \(\in N\)