cho bieu thuc D=\(\frac{2N+7}{N+3}\)[N thuoc z, n khac 3] tim cac gia tri cua n de D la so nguyen
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)
Để B là số nguyên
\(\Rightarrow\frac{3}{n-3}\in z\)
\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n\in\left(6;0;4;2\right)\)
b) đề như z pải ko bn!
ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)
Để C là số nguyên
\(\Rightarrow\frac{16}{n+7}\in z\)
\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)
rùi bn thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)
Bài 1:
a: Để A là phân số thì n+1<>0
hay n<>-1
b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
để P thuộc Z =>2n+1 chia hết cho n+5
=>2n+10-9 chia hết cho n+5
=>2(n+5)-9 chia hết cho n+5
=>9 chia hết cho n+5
\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)
Hoàn tất đoạn văn sau, sau đó trả lời câu hỏi bên dưới
Quang s camping(1)_______at_____the weekend, he often go camping(2)_____on_____the mountains. He usually goes(3)____with______ his friend. Quang and his fried always wear strong boots(4)_____and______warm clothes. (5)______They_____always take food, water and a camping stove. Sometimes, they (6)______camp_______overnight.
* Questions:
1. What does Quang s?
He s camping.
2. Where does he often go camping?
He often goes camping on the mountains.
3. When does he go?
On weekend.
4. Who does he usually go with?
He usually goes with his friend.
5. What do they always wear?
Quang and his fried always wear strong boots and warm clothes.
6. What do they always take?
They always take food, water and a camping stove.
7. Do they camp overnight?
Yes, they do.
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Ta có :
\(\frac{3n+4}{n-1}=\frac{3n-3}{n-1}+\frac{7}{n-1}=3+\frac{7}{n-1}\) nguyên
<=> n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
<=> n \(\in\) {-6; 0; 2; 8}
Ta có: D = \(\frac{2n+6+1}{n+3}\)
= \(\frac{2\left(n+3\right)+1}{n+3}\)
= 2 + \(\frac{1}{n+3}\)
Vì 2 nguyên nên để D nguyên thì \(\frac{1}{n+3}\)\(\in\)Z
\(\Rightarrow\)n + 3 \(\in\)Ư(1) (vì n \(\in\)Z)
\(\Rightarrow\orbr{\begin{cases}n+3=1\\n+3=-1\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}n=-2\\n=-4\end{cases}}\)
Vậy.....