K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

a) Ta có :

\(n+1=n-2+3\)chia hết cho \(n-2\)\(\Rightarrow\)\(3\)chia hết cho \(n-2\)\(\Rightarrow\)\(\left(n-2\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Do đó :

\(n-2=1\Rightarrow n=1+2=3\)

\(n-2=-1\Rightarrow n=-1+2=1\)

\(n-2=3\Rightarrow n=3+2=5\)

\(n-2=-3\Rightarrow n=-3+2=-1\)

Vậy \(n\in\left\{3;1;5;-1\right\}\)

7 tháng 2 2018

a, n + 1 chia hết cho n - 2

\(\Rightarrow n-2+3\) chia hết cho \(n-2\)

\(\Rightarrow\) 3 chia hết cho n - 2

\(\Rightarrow n-2\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n-2\in\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)

a: =>6n+10 chia hết cho 2n-1

=>6n-3+13 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;13;-13}

mà n>=0

nên n thuộc {1;0;7}

b: 80 chia hết cho n

48 chia hết cho n

=>n thuộc ƯC(80;48)

=>n thuộc Ư(16)

mà n<8

nên n thuộc {1;2;4}

c: n chia hết cho 12;50;60

=>n thuộc BC(12;50;60)

=>n thuộc B(300)

mà 0<n<6000

nên \(n\in\left\{300;600;...;5700\right\}\)

AH
Akai Haruma
Giáo viên
22 tháng 12 2022

Lời giải:
a.

$2n+7\vdots n+2$

$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$

$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
 tự nhiên)

$\Rightarrow n\in\left\{-1;1\right\}$

Vì $n$ là số tự nhiên nên $n=1$
b.

$4n-5\vdots 2n-1$

$\Rightarrow 2(2n-1)-3\vdots 2n-1$

$\Rightarrow 3\vdots 2n-1$

$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$

$\Rightarrow n\in\left\{1;0; 2; -1\right\}$

Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$

5 tháng 8 2021

mik xin lỗi, câu a) là n+2 chia hết cho n-4 nhé

2 tháng 3 2022

ai kb ko kết đi chờ chi

20 giờ trước (18:42)

2024 r

Nên mình ko giải 

 

14 tháng 3 2020

a) ta có 2n+3=2(n+2)-1

=> 1 chia hết cho n+2

n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2

Nếu n+1=1 => n=0

Vậy n={-2;0}

b) Ta có n2+2n+5=n(n+2)+5

=> 5 chia hết cho n+2

n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng

n+2-5-115
n-7-3-13
14 tháng 3 2020

cảm ơn nhiều nha!

làm hộ?????

10 tháng 3 2020

3)

3n+7\(⋮2n+1\)

vì \(3n+7⋮3n+7\)

=>\(2\left(3n+7\right)⋮3n+7\)

=> 6n+7\(⋮3n+7\)

vì \(2n+1⋮2n+1\)

\(\Rightarrow3\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+1⋮2n+1\)

\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)

\(\Rightarrow6⋮2n+1\)

đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé

15 tháng 12 2016

làm câu