(x-y2+z)2018+(y-2)218+(z+3)218=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{2018}+1+...+1"\ge2018\sqrt[2018]{x^{2018}.1.111}=2018x.\) " 2017 số 1 nha
tương tự với y
\(y^{2018}+1+..+1\ge2018y\)
\(z^{2018}+1+1..+1\ge2018z\)
+ vế với vế ta được
\(x^{2018}+y^{2018}+z^{2018}+6051\ge2018\left(x+y+z\right)\)
có x^2018+..+z^2018=3 suy ra
\(6054\ge2018\left(x+y+z\right)\Leftrightarrow\frac{6054}{2018}\ge\left(x+y+z\right)\Leftrightarrow\left(x+y+z\right)\le3\)
max của x+y+z là 3 dấu = khi x=y=z=1
Ta có:
\(\left(x^{2018}+1008\right)+\left(y^{2018}+1008\right)+\left(z^{2018}+1008\right)\ge1009\left(\sqrt[1009]{x^{2018}}+\sqrt[1009]{y^{2018}}+\sqrt[1009]{z^{2018}}\right)\)
\(=1009\left(x^2+y^2+z^2\right)\)
\(\Rightarrow x^2+y^2+z^2\le\frac{1008.3+3}{1009}=3\)
(x-y2+z)2018+(y-2)218+(z+3)218=0
=> 0.2018 + 0.218 + 0.218 =0
=> x-y2+z+y-2+z+3 = 0
hay x-3y+2z+3=0
y-2=0 => y=2
z+3=0 => z=-3
Thay vào : x-3y+2z+3=0
Ta có : x-3.2+2.(-3)+3=0
x- 6 + (-6) +3 =0
=> x-0=0-3
=> x=-3