K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2018

Ta có :

n2 + 4 = n + n + 4

           = ( n + 5 ) + ( n + 5 ) +4 - 10

           = 2( n + 5 ) - 6

Vì \(n+5⋮n+5\)nên \(2\left(n+5\right)⋮n+5\)

Để \(2\left(n+5\right)-6⋮n+5\)thì \(6⋮n+5\)

\(\Rightarrow n+5\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

\(\Rightarrow n\in\left\{-4;-6;-3;-7;-2;-8;1;-11\right\}\)

Vậy \(n\in\left\{-4;-6;-3;-7;-2;-8;1;-11\right\}\)

16 tháng 11 2022

1: =>3n-12+17 chia hết cho n-4

=>\(n-4\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{5;3;21;-13\right\}\)

2: =>6n-2+9 chia hết cho 3n-1

=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)

4: =>2n+4-11 chia hết cho n+2

=>\(n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-1;-3;9;-13\right\}\)

5: =>3n-4 chia hết cho n-3

=>3n-9+5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

6: =>2n+2-7 chia hết cho n+1

=>\(n+1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{0;-2;6;-8\right\}\)

1) Ta có: \(2⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(2\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{4;2;5;1\right\}\)

Vậy: \(n\in\left\{4;2;5;1\right\}\)

2) Ta có: \(n+2⋮n-3\)

\(\Leftrightarrow n-3+5⋮n-3\)

mà \(n-3⋮n-3\)

nên \(5⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(5\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

Vậy: \(n\in\left\{4;2;8;-2\right\}\)

4 tháng 2 2021

cảm ơnhaha

29 tháng 12 2015

n  + 3 chia hết choi n + 1

n + 1+  2 chia hết cho n  +1

2 chia hế cho n + 1

n + 1 thuộc U(2) = {-2 ; -1 ; 1 ; 2}

n + 1 = -2 =>? n = -3

n + 1=  -1 => n = -2

n + 1 = 1 => n = 0

n + 1 = 2 => n = 1 

24 tháng 10 2015

Yễn Nguyễn ơi! Giúp mình với!!:

8-3n chia hết cho n+1.

Yễn Nguyễn có làm được ko?

 

6 tháng 8 2016

Câu 1: 

(Đk n € Z) Ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n... 
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6. 
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm) 

Câu 2: Gọi biểu thức trên là a ta có:

 A=mn(m²-n²) 
   = mn(m² - 1 - n² + 1) 
   = mn [(m-1)(m+1) - (n-1)(n+1)] 
   = n(m-1)m(m+1) - m(n-1)n(n+1) 
{n(m-1)m(m+1) chia hết cho 3  (tính 3 số tự nhiên liên tiếp) 
{m(n-1)n(n+1) chia hết cho 3    (tính 3 số tự nhiên liên tiếp) 
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3 
=> A chia hết cho 3 

Câu 3:

 n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n 
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6

Vậy n(n+1)(2n+1) chia hết cho 6

Câu 4: Gọi biểu thức trên là B ta có:

* B=n^2(n^4-1) = n^2(n^2+1)(n^2 - 1) 
= n^2(n^2 - 4 + 5)(n^2 - 1) = n^2(n^2 - 1)(n^2 - 4) + n^2(n^2 - 1).5 
= (n - 2)(n-1).n^2(n+1)(n+2) + n^2(n^2 - 1).5 
(n - 2)(n-1).n^2(n+1)(n+2) chứa tích 5 số liên tiếp chia hết cho 5  và n^2(n^2 - 1).5 cũng chia hết cho 5 
=> B chia hết cho 5 

*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) là tích 3 số tự nhiên liên tiếp chia hết cho 3 
=> B chia hết cho 3 

*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) = n^2(n^2+1)(n+1)(n-1) 
n chẵn => n^2 chia hết cho 4 => A(n) chia hết cho 4 
n lẻ => n +1 và n -1 là 2 số chẵn => (n+1)(n-1) chia hết cho 4 => A(n) chia hết cho 4 
=> B chia hết cho 4 

Vì: 3,4,5 nguyên tố cùng nhau => Bchia hết cho 3.4.5 = 60

Câu 5: Gọi biểu thức trên là C ta có:

Đặt C = mn(m4-n4) = mn(m2-n2)(m2+n2)=mn(m-n)(m+n)(m2+n2) 
*)Nếu 1 trong 2 số m,n chia hết cho 2 suy ra C chia hết cho 2. 
Nếu k0 thì m,n lẻ suy ra m-n chia hết cho 2 suy ra C chia hết cho 2. 
Vậy C chia hết cho 2 
*)Nếu m,n có 1 số chia hết cho 3 => C chia hết cho 3. 
Nếu k0: +)m,n đồng dư mod 3 => m-n chia hết cho 3 =>C chia hết cho 3 
+)m,n chia 3 dư lần lượt là 1, 2 =>m+n chia hết cho 3 => C chia hết cho 3. 
Vậy C chia hết cho 3. 
*)Nếu m,n có 1 số chia hết cho 5 => C chia hết cho 5 
Nếu k0 +)m,n đồng dư mod 5 =>m-n  chia hết cho 5 
+)m,n có số dư mod 5 là (1,2), (1,3), (1,4), (2,3), (2,4),(3,4) 
Các trường hợp (1,4),(2,3) =>m+n  chia hết cho5 
Còn lại m2+n2 chai hết cho 5 (do 1 số chính phương chia 5 dư 0,1,4 nên bạn có thể tự thử các trường hợp còn lại) 
Vậy C chia hết cho 5. 
Từ kết quả trên => C chia hết cho 30( đpcm). 

13 tháng 2 2017

1)[n-6-n+1]chia hết cho   n  -1

suy ra -5 chia hết cho n-1

đến đây tự giải nhé

các phần sau tương tự 

nhớ bấm đúng cho mình nha

13 tháng 2 2017

bạn ơi nk chưa hiểu rõ 

hay kết bạn rùi giải rõ giùm mk nha

cảm ơn bạn rất nhiều

25 tháng 3 2018

a) n+1 thuộc Ư(3)

28 tháng 10 2020
  1. n=6
  2. k thể làm đc
  3. n=3
  4. n=2
  5. ko bik làm xin lỗi nhiều!
  6. n=2
  7. n=4
  8. n=1
17 tháng 8 2018

Ta có : n + 3 = (n + 1) + 2

Do n + 1\(⋮\)n + 1

Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}

Lập bảng :

 n + 1 1  -1 2 -2
   n 0 -2 1 -3

Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1

b) Ta có : 2n + 7 = 2.(n - 3) + 13 

Do n - 3 \(⋮\)n - 3

Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ;  13}

Lập bảng :

 n - 3 1 -1 13 -13
   n 4 2 16 -10

Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3

17 tháng 8 2018

Bài 1 :

a) \(n+3⋮n+1\)

\(a+1+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

n+11-12-2
n0-21-3

b) c) d) tương tự

Bài 2 :

\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)

\(A=5+4^2\cdot5+...+4^{58}\cdot5\)

\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)

Còn lại : tương tự

19 tháng 10 2019

Ta có:

\(n⋮n\)

\(\Rightarrow4⋮n\)

\(\Rightarrow n\inƯ\left(4\right)\)

\(\RightarrowƯ\left(4\right)\in\left\{1;2;4\right\}\)

Vậy \(n\in\left\{1;2;4\right\}\)

19 tháng 10 2019

Ta có:

2+5=7

Vì 7 chia hết cho n

=>n thuộc Ư(7)

=>n thuộc {1;7}