Cho a, b, x, y thuộc Z. Chứng minh nếu ax-by chia hết cho x+y thì ay-bx chia hết cho x+y.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( ax - by ) + ( ay - bx ) = ax - by + ay - bx
= ( ax + ay ) - ( by + bx )
= a . ( x + y ) - b . ( y + x )
= ( a -b ) . ( x + y )\(⋮\) x + y
Vậy ( ax - by ) + ( ay - bx )\(⋮\) x + y ( 1 )
Vì ax - by\(⋮\) x + y ( 2 )
từ ( 1 ) và ( 2 )\(\Rightarrow\)ay - bx chia hết cho x + y
Ta có: (ax - by) + (ay - bx)
= ax - by + ay - bx
= (ax + ay) - (bx + by)
= a.(x+y) - b.(x+y)
= (a-b).(x+y)
Vì \(x+y\ne0\)\(\Rightarrow\)\(\left(a-b\right).\left(x+y\right)⋮x+y\)
\(\Rightarrow\)\(\left(ax-by\right)+\left(ay-bx\right)⋮x+y\)
Vậy nếu ax-by chia hết cho x+y thì .......
Xét tổng: (ax - by) + (ay - bx) = ax - by + ay - bx = (ax + ay) - (by + bx) = a(x + y) - b(x + y) = (a - b)(x+y) chia hết cho x + y
Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)
Mà ax - by chia chết cho x + y (2)
Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm)
Từ giả thiết
x^2 - yz = a
y^2 - zx = b
z^2 - xy = c
ta suy ra
x^2 + y^2 + z^2 - xy - yz - zx = a + b + c # 0 (vì x,y,z không đồng thời bằng nhau);
và
x^3 - xyz = ax
y^3 - xyz = by
z^3 - xyz = cz.
Cộng các đẳng thức theo vế, ta được
x^3 + y^3 + z^3 - 3xyz = ax + by + cz.
Sử dụng hằng đẳng thức x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) và x^2 + y^2 + z^2 - xy - yz - zx = a + b + c thì đẳng thức trên được viết lại
(x + y + z)(a + b + c) = ax + by + cz.
Suy ra ax + by + cz chia hết cho a + b + c.
ta có 4x - 3y = 19x - 3.(5x + y)
Vì 19x chia hết cho 19;
5x + y chia hết cho 19 nên 3(5x + y) chia hết cho 19
do đó 19x - 3(5x + y) chia hết cho 19 hay 4x - 3y chia hết cho 19
vì 5x+y : 19 nên
5x:19 =>x:19=>4x:19(1)
y:19 =>3y:19 (2)
từ 1 và 2 ta có
4x-3y:19
(dấu : là chia hết)
Xét tổng : (ax - by) + (ay - bx) = ax - by + ay - bx
= (ax + ay) - (by + bx)
= a(x + y) - b(x + y)
= (a - b)(x + y) chia hết cho x + y .
Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)
Vì ax - by chia hết cho x + y (2)
=> Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm)
đây là toán lớp mấy vậy dùng