Cho số tự nhiên ab bằng ba lần tích các chữ số của nó:
a) Chứng minh rằng \(b⋮a\)
b) G sử b=k.a. Chứng minh rằng k là ước của 10
c)Tìm các số ab nói trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có ab= 5x (axb) +2
mà ab-2 = 5x a x b.
suy ra 10xa +b -2 =5 x a x b.
vì 5xaxb chia hết cho 5 nên b-2 chia hết cho 5 nên b= 7 hoặc 2.
nếu b=7 thì a = 21(Loại) ,
nếu b=2 thì a=6(thỏa mãn)
thử lại thì 62=5x6x2 +2.
ta có ab= 5x (axb) +2 mà ab-2 = 5x a x b. suy ra 10xa +b -2 =5 x a x b. vì 5xaxb chia hết cho 5 nên b-2 chia hết cho 5 nên b= 7 hoặc 2. nếu b=7 thì a = 21(Loại) , nếu b=2 thì a=6(thỏa mãn) thử lại thì 62=5x6x2 +2.
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) ĐS: a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
a) Ta có :
\(\overline{ab}=3ab\)
\(\Leftrightarrow\)\(10a+b=3ab\)
\(\Leftrightarrow\)\(b=3ab-10a=a.\left(3b-10\right)\)
Ta thấy \(b=a.\left(3b-10\right)\)\(\Rightarrow\)\(b⋮a\)
b) Ta có :
\(10a+b=3ab\)
\(\Leftrightarrow\)\(10a+ak=3ka^2\)
\(\Leftrightarrow\)\(a.\left(10+k\right)=3ka^2\)
\(\Leftrightarrow\)\(10+k=3ak\)
\(\Leftrightarrow\)\(10=3ak-k\)
\(\Leftrightarrow\)\(10=k.\left(3a-1\right)\)
Vì \(10=k.\left(3a-1\right)\)nên \(k\inƯ\left(10\right)\)