tìm số nguyên x sao cho
a, x-11 là bội của x-2
b, x+1 là ước của 3x+12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,x-11 là bội của x+2
=>x+2-13 chia hết cho x+2
=>13 chia hết cho x+2
=>x+2\(\in\)Ư(13)={-13,-1,1,13}
=>x\(\in\){-15,-3,-1,11}
b,x-11 là ước của 3x+14
=>3x-33+47 chia hết cho x-11
=>3(x-11)+47 chia hết cho x-11
=>47 chia hết cho x-11
=>x-11\(\in\)Ư(47)={-47,-1,1,47}
=>x\(\in\){-36,10,12,58}
a) -7 là bội của x + 8. Nên x + 8 là ước của -7
x + 8 ∈ {1; -1; 7; -7}
x ∈ {-7; -9; -1; -15}
b) Ta có: 3x – 13 = 3x – 6 – 7 = 3 ( x – 2 ) – 7
Vì x – 2 là ước của 3x – 13 nên x – 2 là ước của 3(x – 2) – 7
Nên x – 2 là ước của 7 ⇒ x – 2 ∈ {1 ; -1 ; 7 ; -7}
x ∈ {3 ; 1 ; 9 ; -5}
a) Ta có : \(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
...
b) Ta có : \(2x+1\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm4;\pm7;\pm12;\pm28\right\}\)
Mà \(2x+1\)là số chẵn
\(\Rightarrow2x+1\in\left\{\pm1;\pm7\right\}\)
...
c) Ta có : \(x+15\)là bội của \(x+3\)
\(\Rightarrow x+15⋮x+3\)
\(\Rightarrow x+3+12⋮x+3\)
Vì \(x+3⋮x+3\)
\(\Rightarrow12⋮x+3\)
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
...
x - 13 chia hết cho x + 2
=> x + 2 - 15 chia hết cho x + 2
=> 15 chia hết cho x + 2
=> x + 2 thuộc {-1; 1; -3; 3; -5; 5; -15; 15}
=> x thuộc {-3; -1; -5; 1; -7; 3; -17; 13}
b tương tự
a,x-11 là bội của x-2
=>x-11 chia hết cho x-2
=> x-2-9 chia hết cho x-2
=> 9 chia hết cho x-2
=> x-2 là ước của 9
=> x-2 thuộc {-9;-3;-1;1;3;9}
=> x thuộc {-7;-1;1;3;5;11}
b, x+1 là ước của 3x+12
=> 3x+12 chia hết cho x+1
=> 3x+3+9 chia hết cho x+1
=> 3(x+1)+9 chia hết cho x+1
=> 9 chia hết cho x+1
=> x+1 thuộc ước của 9
=> x+1 thuộc {-9;-3;-1;1;3;9}
=> x thuộc {-10;-4;-2;0;2;8}