Cho tam giác ABC cân tại A.Trên tia đối của tia BA lấy điểm D,trên tia đối của tia CA lấy điểm E sao cho BD=CE.Từ D kẻ DM,từ E kẻ EN cùng vuông góc với đường thẳng BC(M,N∈đường thẳng BC)
a)Chứng minh DM=DN
b)Chứng minh tam giác ADM=tam giác AEN
c)Kẻ tia Dx vuông góc với AD tại D,ket tia E vuông góc với AE tại E,x cắt Ey tại P.Chứng minh rằng AP đi qua trung điểm của DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha!!!
a.
ABC = MBD (2 góc đối đỉnh)
ACB = NCE (2 góc đối đỉnh)
mà ABC = ACB (tam giác ABC cân tại A)
=> MBD = NCE
Xét tam giác MBD vuông tại M và tam giác NCE vuông tại N có:
MBD = NCE (chứng minh trên)
BD = CE (gt)
=> Tam giác MBD = Tam giác NCE (cạnh huyền - góc nhọn)
=> DM = EN (2 cạnh tương ứng)
b.
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
Xét tam giác ADM và tam giác AEN có:
DM = EN (theo câu a)
MDA = NEA (tam giác MBD = tam giác NCE)
AD = AE (chứng minh trên)
=> Tam giác ADM = Tam giác AEN (c.g.c)
a.
ABC = MBD (2 góc đối đỉnh)
ACB = NCE (2 góc đối đỉnh)
mà ABC = ACB (tam giác ABC cân tại A)
=> MBD = NCE
Xét tam giác MBD vuông tại M và tam giác NCE vuông tại N có:
MBD = NCE (chứng minh trên)
BD = CE (gt)
=> Tam giác MBD = Tam giác NCE (cạnh huyền - góc nhọn)
=> DM = EN (2 cạnh tương ứng)
b.
AD = AB + BD
AE = AC + CE
mà AB = AC (tam giác ABC cân tại A)
BD = CE (gt)
=> AD = AE
Xét tam giác ADM và tam giác AEN có:
DM = EN (theo câu a)
MDA = NEA (tam giác MBD = tam giác NCE)
AD = AE (chứng minh trên)
=> Tam giác ADM = Tam giác AEN (c.g.c)
a: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có
BD=CE
\(\widehat{MBD}=\widehat{NCE}\)
Do đó:ΔMBD=ΔNCE
Suy ra: DM=EN
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
BM=CN
\(\widehat{HMB}=\widehat{KNC}\)
Do đó: ΔHBM=ΔKCN
Suy ra: \(\widehat{HBM}=\widehat{KCN}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
hay ΔIBC cân tại I
=>IB=IC
hay I nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AI là đường trung trực của BC
=>AI⊥BC
=>AI⊥MN
a: Xét ΔABC có AB/BD=AC/CE
nên BC//DE
b: Xét ΔDBM vuông tại M và ΔECN vuông tại N có
BD=CE
góc DBM=góc ECN
=>ΔDBM=ΔECN
=>DM=EN và BM=CN
c: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
=>ΔABM=ΔACN
=>AM=AN
=>ΔAMN cân tại A
file:///C:/Users/ADMIN/Pictures/TO%C3%81N%207.pnG
BẠN CỨ VÀO LIK NÀY ĐI PHẢI COPPY NHA
a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E có
DB=CE
\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACB}\right)\)
Do đó: ΔMBD=ΔNCE
Suy ra: DM=EN