cho hình vuông ABCD , trên BC lấy E sao cho góc BAE=15 độ.trên CD lấy Fsao cho góc DAF=30 độ.từ B kẻ BH vuông góc với AE.Trên tia đối của HB lấy K sao cho HK=HB.Cmr
a,tam giac abk can tai a
b,tam giac akd deu
c,3 điểm e,k,f thẳng hàng
d,
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
Giải thích các bước giải:
Xét ΔMNF,ΔMPEΔMNF,ΔMPE có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
Mˆ:ChungM^:Chung
ME=MF(gt)ME=MF(gt)
=> ΔMNF=ΔMPE(c.g.c)ΔMNF=ΔMPE(c.g.c)
b) Ta có : {MN=MP(ΔMNP cân tại M))ME=MF(gt){MN=MP(ΔMNP cân tại M))ME=MF(gt)
Lại có : {E∈MNF∈MP(gt)⇒{MN=ME+NEMP=MF+FP{E∈MNF∈MP(gt)⇒{MN=ME+NEMP=MF+FP
Nên : MN−ME=MP−MFMN−ME=MP−MF
⇔NE=PF⇔NE=PF
Xét ΔNSE,ΔPSFΔNSE,ΔPSF có :
ESNˆ=FSPˆESN^=FSP^ (đối đỉnh)
NE=FPNE=FP (cmt)
SNEˆ=SPFˆSNE^=SPF^ (suy ra từ ΔMNF=ΔMPEΔMNF=ΔMPE)
=> ΔNSE=ΔPSF(g.c.g)ΔNSE=ΔPSF(g.c.g)
c) Xét ΔMEFΔMEF có :
ME=MF(gt)ME=MF(gt)
=> ΔMEFΔMEF cân tại M
Ta có : MEFˆ=MFEˆ=180O−Mˆ2(1)MEF^=MFE^=180O−M^2(1)
Xét ΔMNPΔMNP cân tại M có :
MNPˆ=MPNˆ=180o−Mˆ2(2)MNP^=MPN^=180o−M^2(2)
Từ (1) và (2) => MEFˆ=MNPˆ(=180O−Mˆ2)MEF^=MNP^(=180O−M^2)
Mà thấy : 2 góc này ở vị trí đồng vị
=> EF//NP(đpcm)EF//NP(đpcm)
d) Xét ΔMKN,ΔMKPΔMKN,ΔMKP có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
MK : Chung
NK=PKNK=PK (K là trung điểm của NP )
=> ΔMKN=ΔMKP(c.c.c)ΔMKN=ΔMKP(c.c.c)
=> NMKˆ=PMKˆNMK^=PMK^ (2 góc tương ứng)
=> MK là tia phân giác của NMPˆNMP^ (3)
Xét ΔMSN,ΔMSPΔMSN,ΔMSP có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
MNSˆ=MPSˆMNS^=MPS^ ( do ΔMNF=ΔMPEΔMNF=ΔMPE)
MS:ChungMS:Chung
=> ΔMSN=ΔMSP(c.g.c)ΔMSN=ΔMSP(c.g.c)
=> NMSˆ=PMSˆNMS^=PMS^ (2 góc tương ứng)
=> MS là tia phân giác của NMPˆNMP^ (4)
Từ (3) và (4) => M , S, K thẳng hàng
Bài này tương tự nha bn
Min ko co thgian nên ko jup bn dc rồi
sr
c) Xét \(\Delta AEP\) và \(\Delta AEB\)
có: AP=AB ( p b)
góc BAE = góc PAE ( p a)
AE là cạnh chung
\(\Rightarrow\Delta AEP=\Delta AEB\left(c-g-c\right)\)
\(\Rightarrow\widehat{APE}=\widehat{ABE}=90^0\)( 2 góc tương ứng )
\(\Rightarrow\widehat{APE}=90^0\)
\(\Rightarrow AP\perp PE⋮P\)( định lí) (1)
Ta có: góc BAE + góc PAE + góc PAF + góc FAD = góc BAD
thay số: 15 + 15 + góc PAF + 30 = 90
góc PAF = 90 -15 -15 -30
góc PAF = 30
=> góc PAF = góc FAD ( = 30 độ)
Xét tam giác AFP va tam giác AFD
có: AP = AD ( p b)
góc PAF = góc FAD ( cmt)
AF là cạnh chung
\(\Rightarrow\Delta AFP=\Delta AFD\left(c-g-c\right)\)
\(\Rightarrow\widehat{APF}=\widehat{ADF}=90^0\)( 2 góc tương ứng)
\(\Rightarrow\widehat{APF}=90^0\)
\(\Rightarrow AP\perp PF⋮P\)( định lí) (2)
Từ (1); (2) => E;P;F thẳng hàng