Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
Giải thích các bước giải:
Xét ΔMNF,ΔMPEΔMNF,ΔMPE có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
Mˆ:ChungM^:Chung
ME=MF(gt)ME=MF(gt)
=> ΔMNF=ΔMPE(c.g.c)ΔMNF=ΔMPE(c.g.c)
b) Ta có : {MN=MP(ΔMNP cân tại M))ME=MF(gt){MN=MP(ΔMNP cân tại M))ME=MF(gt)
Lại có : {E∈MNF∈MP(gt)⇒{MN=ME+NEMP=MF+FP{E∈MNF∈MP(gt)⇒{MN=ME+NEMP=MF+FP
Nên : MN−ME=MP−MFMN−ME=MP−MF
⇔NE=PF⇔NE=PF
Xét ΔNSE,ΔPSFΔNSE,ΔPSF có :
ESNˆ=FSPˆESN^=FSP^ (đối đỉnh)
NE=FPNE=FP (cmt)
SNEˆ=SPFˆSNE^=SPF^ (suy ra từ ΔMNF=ΔMPEΔMNF=ΔMPE)
=> ΔNSE=ΔPSF(g.c.g)ΔNSE=ΔPSF(g.c.g)
c) Xét ΔMEFΔMEF có :
ME=MF(gt)ME=MF(gt)
=> ΔMEFΔMEF cân tại M
Ta có : MEFˆ=MFEˆ=180O−Mˆ2(1)MEF^=MFE^=180O−M^2(1)
Xét ΔMNPΔMNP cân tại M có :
MNPˆ=MPNˆ=180o−Mˆ2(2)MNP^=MPN^=180o−M^2(2)
Từ (1) và (2) => MEFˆ=MNPˆ(=180O−Mˆ2)MEF^=MNP^(=180O−M^2)
Mà thấy : 2 góc này ở vị trí đồng vị
=> EF//NP(đpcm)EF//NP(đpcm)
d) Xét ΔMKN,ΔMKPΔMKN,ΔMKP có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
MK : Chung
NK=PKNK=PK (K là trung điểm của NP )
=> ΔMKN=ΔMKP(c.c.c)ΔMKN=ΔMKP(c.c.c)
=> NMKˆ=PMKˆNMK^=PMK^ (2 góc tương ứng)
=> MK là tia phân giác của NMPˆNMP^ (3)
Xét ΔMSN,ΔMSPΔMSN,ΔMSP có :
MN=MPMN=MP (ΔMNPΔMNP cân tại M)
MNSˆ=MPSˆMNS^=MPS^ ( do ΔMNF=ΔMPEΔMNF=ΔMPE)
MS:ChungMS:Chung
=> ΔMSN=ΔMSP(c.g.c)ΔMSN=ΔMSP(c.g.c)
=> NMSˆ=PMSˆNMS^=PMS^ (2 góc tương ứng)
=> MS là tia phân giác của NMPˆNMP^ (4)
Từ (3) và (4) => M , S, K thẳng hàng
Bài này tương tự nha bn
Min ko co thgian nên ko jup bn dc rồi
sr
c) Xét \(\Delta AEP\) và \(\Delta AEB\)
có: AP=AB ( p b)
góc BAE = góc PAE ( p a)
AE là cạnh chung
\(\Rightarrow\Delta AEP=\Delta AEB\left(c-g-c\right)\)
\(\Rightarrow\widehat{APE}=\widehat{ABE}=90^0\)( 2 góc tương ứng )
\(\Rightarrow\widehat{APE}=90^0\)
\(\Rightarrow AP\perp PE⋮P\)( định lí) (1)
Ta có: góc BAE + góc PAE + góc PAF + góc FAD = góc BAD
thay số: 15 + 15 + góc PAF + 30 = 90
góc PAF = 90 -15 -15 -30
góc PAF = 30
=> góc PAF = góc FAD ( = 30 độ)
Xét tam giác AFP va tam giác AFD
có: AP = AD ( p b)
góc PAF = góc FAD ( cmt)
AF là cạnh chung
\(\Rightarrow\Delta AFP=\Delta AFD\left(c-g-c\right)\)
\(\Rightarrow\widehat{APF}=\widehat{ADF}=90^0\)( 2 góc tương ứng)
\(\Rightarrow\widehat{APF}=90^0\)
\(\Rightarrow AP\perp PF⋮P\)( định lí) (2)
Từ (1); (2) => E;P;F thẳng hàng
Bạn tự vẽ hình nha =="
a.
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (M là trung điểm của BD)
AM là cạnh chung
=> Tam giác ABM = Tam giác ADM (c.c.c)
b.
AB = AD (gt)
=> Tam giác ABD cân tại A
M là trung điểm của BD
=> AM là trung tuyến của tam giác ABD cân tại A
=> AM là đường cao tam giác ABD cân tại A
=> AM _I_ BD
c.
Xét tam giác ABK và tam giác ADK có:
AB = AD (tam giác ABD cân tại A)
BAK = DAK (tam giác ABM = tam giác ADM)
AK là cạnh chung
=> Tam giác ABK = Tam giác ADK (c.g.c)
d.
ABK + KBF = 180 (2 góc kề bù)
ADK + KDC = 180 (2 góc kề bù)
Mà ABK = ADK (tam giác ABK = tam giác ADK)
=> KBF = KDC
Xét tam giác KBF và tam giác KDC có:
KB = KD (tam giác ABK = tam giác ADK)
KBF = KDC (chứng minh trên)
BF = DC (gt)
=> Tam giác KBF = Tam giác KDC (c.g.c)
BKD + DKC = 180 (2 góc kề bù)
Mà DKC = BKF (Tam giác KBF = Tam giác KDC)
=> BKD + BKF = 180
=> KD và KF là 2 tia đối
=> K , F , D thẳng hàng
Chúc bạn học tốt ^^
Bạn tự vẽ hình nha =="
a.
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (M là trung điểm của BD)
AM là cạnh chung
=> <!--[endif]-->Tam giác ABM = Tam giác ADM (c.c.c)
b.
AB = AD (gt)
=> Tam giác ABD cân tại A
M là trung điểm của BD
=> AM là trung tuyến của tam giác ABD cân tại A
=> AM là đường cao tam giác ABD cân tại A
=> AM _I_ BD
c.
Xét tam giác ABK và tam giác ADK có:
AB = AD (tam giác ABD cân tại A)
BAK = DAK (tam giác ABM = tam giác ADM)
AK là cạnh chung
=> Tam giác ABK = Tam giác ADK (c.g.c)
d.
ABK + KBF = 180 (2 góc kề bù)
ADK + KDC = 180 (2 góc kề bù)
Mà ABK = ADK (tam giác ABK = tam giác ADK)
=> KBF = KDC
Xét tam giác KBF và tam giác KDC có:
KB = KD (tam giác ABK = tam giác ADK)
KBF = KDC (chứng minh trên)
BF = DC (gt)
=> Tam giác KBF = Tam giác KDC (c.g.c)
BKD + DKC = 180 (2 góc kề bù)
Mà DKC = BKF (Tam giác KBF = Tam giác KDC)
=> BKD + BKF = 180
=> KD và KF là 2 tia đối
=> K , F , D thẳng hàng
Chúc bạn học tốt ^^
Nobi Nobita s có chữ endif hay là bạn vào KTPT copy bài của Phương An