K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

+, Nếu x = 2 => 2^2-2y^2 = 1

=> 2y^2 = 4-1-3

=> ko tồn tại y

+, Nếu x > 2 => x lẻ 

=> x^2 là số chính phương lẻ => x^2 chia 8 dư 1

=> 2y^2 = x^2-1 chia hết cho 8

=> y^2 chia hết cho 4

=> y chia hết cho 2 

=> y=2 ( vì y là số nguyên tố )

=> x^2-2.2^2 =1

=> x^2-8=1

=> x^2=1+8=9

=> x=3 ( vì x là số nguyên tố )

Vậy x=3 và y=2

Tk mk nha

13 tháng 1 2018

tại sao lại có x=2

NV
19 tháng 2 2020

Bạn tham khảo:

https://hoc24.vn/hoi-dap/question/916292.html

NV
19 tháng 2 2020

\(\left\{{}\begin{matrix}x+y=2k-1\\\left(x+y\right)^2-2xy=2k^2+4k-11\end{matrix}\right.\)

\(\Rightarrow2xy=\left(2k-1\right)^2-\left(2k^2+4k-11\right)=2k^2-8k+12\)

\(\Rightarrow xy=k^2-4k+6=\left(k-2\right)^2+2\ge2\)

Dấu "=" xảy ra khi \(k=2\)

NV
13 tháng 1 2021

\(y\left(x+1\right)^2=-x^2+2018x-1\)

\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)

\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)

Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau

\(\Rightarrow2020⋮\left(x+1\right)^2\)

Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4

\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)

 

NV
13 tháng 1 2021

b.

Từ pt đầu:

\(x^2+xy-2y^2+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)

Thế xuống dưới ...