tính : \(3 +\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tách 100 thành 100 số 1
Ta có: TS=\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=100-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
=\(0+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)=MS
=> Phân số trên=1
Câu hỏi của Monkey D. Luffy - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
em tham khảo câu hỏi của Sáng Nguyễn nhé
Mình mới làm bài này hôm qua này:
Câu hỏi của Lê Thế Dũng - Học và thi online với HOC24
\(B=3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+....+\frac{3}{1+2+3+...+100}\)
\(B=3+3\left(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+..+100}\right)\)
Xét thừa số tổng quát: \(\frac{1}{1+2+3+...+n}=\frac{1}{\left[\left(n-1\right):1+1\right]:2.\left(n+1\right)}=\frac{1}{\frac{n\left(n+1\right)}{2}}\)
Ta có: \(B=3+3\left(\frac{1}{\frac{2\left(2+1\right)}{2}}+\frac{1}{\frac{3\left(3+1\right)}{2}}+\frac{1}{\frac{4\left(4+1\right)}{2}}+...+\frac{1}{\frac{100\left(100+1\right)}{2}}\right)\)
\(B=3+3\left[2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\right]\)
\(B=3+6\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(B=3+6\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+100}\)
\(=3\times\left(\frac{1}{0+1}+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)
\(=3\times\left(\frac{1}{\left(0+1\right)\times2:2}+\frac{1}{\left(1+2\right)\times2:2}+\frac{1}{\left(1+3\right)\times3:2}+...+\frac{1}{\left(1+100\right)\times100:2}\right)\)
\(=3\times\left(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{100\times101}\right)\)
\(=3\times2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)
\(=6\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=6\times\left(1-\frac{1}{101}\right)\)
\(=6\times\frac{100}{101}\)
\(=\frac{600}{101}\)
Ủng hộ mk nha ^_-
Tính :
\(S=2+2^2+2^3+...+2^{100}\)
\(P=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
a)S=2+22+23+...+2100
2S=2(2+22+23+...+2100)
2S=22+23+...+2101
2S-S=(22+23+...+2101)-(2+22+23+...+2100)
S=2101-2
b)\(P=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(3P=3\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}\right)\)
\(3P=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(3P-P=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)
\(2P=1-\frac{1}{3^{100}}\)
\(P=\left(1-\frac{1}{3^{100}}\right):2\)
ngài Kiệt ღ ๖ۣۜLý๖ۣۜ đúng là không ái sánh bằng sự gian xảo này
\(3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)
\(=3+\frac{3}{\left(2+1\right).2:2}+\frac{3}{\left(3+1\right).3:2}+...+\frac{3}{\left(100+1\right).100:2}\)
\(=3+\frac{3.2}{\left(2+1\right)2}+\frac{3.2}{\left(3+1\right).3}+...+\frac{3.2}{\left(100+1\right).100}\)
\(=3+\frac{6}{2.3}+\frac{6}{3.4}+...+\frac{6}{100.101}\)
\(=6\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=6\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=6\left(1-\frac{1}{101}\right)=6\cdot\frac{100}{101}=\frac{600}{101}\)