K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

\(A=\frac{2x^2-16x+43}{x^2-8x+22}\Leftrightarrow Ax^2-8Ax+22A-2x^2+16x-43=0\)

\(\Leftrightarrow x^2\left(A-2\right)-x\left(8A-16\right)+22A-43=0\)

\(\Delta=\left[-\left(8A-16\right)\right]^2-4\left(A-2\right)\left(22A-43\right)\)

\(=-24A^2+92A-88\)\(\Delta\) có nghiệm khi \(\Delta\ge0\)

\(\Leftrightarrow-24A^2+92A-88\ge0\)\(\Leftrightarrow6A^2-23A+22\le0\)

\(\Leftrightarrow\left(A-2\right)\left(6A-11\right)\le0\)\(\Rightarrow\frac{11}{6}\le A\le2\)

7 tháng 1 2018

Ta có \(A=\frac{2x^2-16x+43}{x^2-8x+22}\)

\(\Leftrightarrow\frac{2x^2-16x+44-1}{x^2-8x+22}=\frac{2x^2-16x+44}{x^2-8x+22}-\frac{1}{x^2-8x+22}\)

\(\Leftrightarrow\frac{2.\left(x^2-8x+22\right)}{x^2-8x+22}-\frac{1}{x^2-8x+22}=2-\frac{1}{x^2-8x+22}\)

Muốn A có gtnn  thì \(\frac{1}{x^2-8x+22}\)Phải lớn nhất 

Suy Ra \(x^2-8x+22\)Phải nhỏ nhất 

\(\Leftrightarrow x^2-8x+22=x^2-8x+16+6=\left(x-4\right)^2+6\)

Vậy GTNN của \(x^2-8x+22\)Là 6

Suy Ra GTLN của \(\frac{1}{x^2-8x+22}\) Là \(\frac{1}{6}\)

Vậy GTNN của \(A=2-\frac{1}{6}=\frac{11}{6}\)Khi x-4=0 => x=4

20 tháng 12 2017

A = 2.(x^2-8x+22)-1/x^2-8x+22 = 2 - 1/x^2-8x+22

Có : x^2-8x+22 = (x^2-8x+16)+6 = (x-4)^2+6 >= 6 => 1/x^2-8x+22 < = 1/6

=> A = 2 - 1/x^2-8x+22 >= 2-1/6 = 11/6

Dấu "=" xảy ra <=> x-4 = 0 <=> x=4

Vậy GTNN của A = 11/6 <=> x=4

k mk nha

20 tháng 12 2016

Vì \(x^2-8x+22=\left(x^2-8x+16\right)+6=\left(x-4\right)^2+6>0\) nên A luôn xác định.

Từ giả thiết ta có \(A\left(x^2-8x+22\right)=2x^2-16x+43\Leftrightarrow x^2\left(A-2\right)-8x\left(A-2\right)+\left(22A-43\right)=0\)

Để tồn tại GTNN của A thì phải tồn tại giá trị của x thỏa mãn GTNN đó, tức là PT trên có nghiệm.

Xét \(\Delta'=16\left(A-2\right)^2-\left(A-2\right)\left(22A-43\right)=\left(A-2\right)\left(11-6A\right)\ge0\)

\(\Leftrightarrow\frac{11}{6}\le A\le2\)

Vậy min A = 11/6 , max A = 2 (còn giá trị của x bạn tự tìm)

20 tháng 12 2016

Mình bổ sung cho lời giải bạn Ngọc một chút (dù gì đây là bài lớp 8),

Bạn có thể tìm trước min, max của A ngoài nháp, lúc trình bày để né Delta bạn viết như sau:

VD: minA=\(\frac{11}{6}\).

Bước 1: Làm cho mẫu có số 6. \(A=\frac{6\left(2x^2-16x+43\right)}{6\left(x^2-8x+22\right)}\).

Bước 2: Làm cho tử có số 11. \(A=\frac{11\left(x^2-8x+22\right)+x^2-8x+16}{6\left(x^2-8x+22\right)}\).

Nếu bạn làm đúng thì phần dư ra là một bình phương, quả nhiên  \(x^2-8x+16=\left(x-4\right)^2\).

Vậy \(A=\frac{11}{6}+\frac{\left(x-4\right)^2}{6\left(x^2-8x+22\right)}\ge\frac{11}{6}\). Đẳng thức xảy ra tại \(x=4\).

Hình như biểu thức không có max.

22 tháng 11 2016

A=[2(x^2-8x+22)-1]/(x^2-8x+22)

A=2-1/[(x-4)^2+6]

A nho nhat khi (x-4)^2=0=> x=4

min(A)=2-1/6

14 tháng 11 2017

a, N = 2 + 6/x^2-8x+22

Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3

Dấu "=" xảy ra <=> x-4 = 0 <=> x=4

Vậy Max N =3 <=> x=4

k mk nha

14 tháng 11 2017

Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !

24 tháng 12 2017

mik rất cảm kích bạn đã giải giúp mik bài này, nhưng lại nhìn nhầm đề :3. thuc chat minh da thu gon M = 2 + (10x2 - 1)/[(x - 4)2 + 6]

vấn đề mik mún hỏi bạn bây giờ là có phải M nhỏ nhất khi (10x2 - 1)/[(x-4)2 + 6] nhỏ nhất ko. ma (10x2 - 1)/[(x - 4)2 + 6] lại chỉ có duy nhất 1 giá trị âm <=> x=0

16 tháng 10 2015

Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b)( x2 + Y2 )

Ở đây hệ số của x là 1 nên a là 1.

Ta có: ( x + 2y )<= ( 12 + (căn2)) ( x+ ( căn 2 )2y2 )

=> 1 <= 3 ( x2 + 2y)

=> x2 + 2y>= 1/3