Tìm min hoặc max:
\(^{M=x^2+y^2+xy-3x-3y+2018}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức là A
\(x^2+xy+y^2-3x-3y+2018\)
\(=\left(x^2+xy+y^2\right)-\left(3x+3y\right)+2018\)
\(=\left(x+y\right)^2-3\left(x+y\right)+2018\)
Ta có : (x - y)² ≥ 0
<=> x² + y² ≥ 2xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
<=> xy ≤ (x + y)²/4
<=> -xy ≥ -(x + y)²/4
--> A ≥ (x + y)² - 3(x + y) - (x + y)²/4
<=> A ≥ 3(x + y)²/4 - 3(x + y)
để dễ nhìn,ta đặt t = x + y
--> A ≥ 3t²/4 - 3t = 3(t²/4 - 2.t/2 + 1) - 3 = 3(t/2 - 1)² - 3 ≥ -3
Dấu " = " xảy ra <=> t/2 = 1 <=> t = 2 <=> x + y = 2 và x = y --> x = y = 1
Vậy MinA = -3 <=> x = y = 1
\(M=x^2+y^2+xy-3x-3y+2018\)
\(=x^2+2x\frac{\left(y-3\right)}{2}+\left(\frac{y-3}{2}\right)^2+y^2-3y+2018-\left(\frac{y-3}{2}\right)^2\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3y^2-6y+8063}{4}\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)}{4}+2015\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}+2015\ge2015\)
\("="\Leftrightarrow x=y=1\)
Cảm ơn bạn nhiều nha