K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2021

`B=(sin2x)/(tanx+cot2x)`

Tử ` = 2sinxcosx`

Mẫu `=(sinx)/(cosx) + (cos2x)/(sin2x)`

`=(sinx . sin2x + cosx .cos2x)/(2sinx cosx . cosx)`

`=(cos (2x-x))/(2sinxcos^2x)`

`=(cosx)/(2sinxcos^2x)`

`=1/(2sinxcosx)`

`=> B = sin^2 2x`

Lớp 8 nên không chắc ạ.

\(B=\dfrac{sin2x}{tanx+cot2x}=\dfrac{2sinx.cosx}{\dfrac{sinx}{cosx}+\dfrac{cos2x}{sin2x}}=\dfrac{2sinx.cosx}{\dfrac{sinx.sin2x+cos2x.cosx}{cosx.sin2x}}=\dfrac{2sinx.cosx}{\dfrac{.2sin^2x.cosx+cosx\left(2cos^2x-1\right)}{cosx.2sinx.cosx}}=\dfrac{2sinx.cosx.}{\dfrac{cosx\left(2sin^2x+2cos^2x-1\right)}{cos.2sinx.cosx}}=\dfrac{2sinx.cosx}{\dfrac{1}{2sinx.cosx}}=2sinx.cosx.2sinx.cosx=sin^22x.\)

19 tháng 9 2017

hộ vs ae ơi

16 tháng 10 2023

a: \(VT=\dfrac{cot^2x}{1+cot^2x}\cdot\dfrac{1+tan^2x}{tan^2x}\)

\(=\dfrac{cot^2x}{\dfrac{1}{sin^2x}}\cdot\dfrac{\dfrac{1}{cos^2x}}{tan^2x}\)

\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{1}{cos^2x}:\dfrac{1}{sin^2x}\)

\(=\dfrac{cot^2x}{tan^2x}\cdot\dfrac{sin^2x}{cos^2x}\)

\(=cot^2x\)

\(VP=\dfrac{tan^2x+cot^2x}{1+tan^4x}=\dfrac{\dfrac{sin^2x}{cos^2x}+\dfrac{cos^2x}{sin^2x}}{1+\dfrac{sin^4x}{cos^4x}}\)

\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}:\dfrac{cos^4x+sin^4x}{cos^4x}\)

\(=\dfrac{sin^4x+cos^4x}{sin^2x\cdot cos^2x}\cdot\dfrac{cos^4x}{cos^4x+sin^4x}=\dfrac{cos^2x}{sin^2x}=cot^2x\)

=>VT=VP

b:

\(\dfrac{tan^2x-cos^2x}{sin^2x}+\dfrac{cot^2x-sin^2x}{cos^2x}\)

\(=\dfrac{\left(\dfrac{sinx}{cosx}\right)^2-cos^2x}{sin^2x}+\dfrac{\left(\dfrac{cosx}{sinx}\right)^2-sin^2x}{cos^2x}\)

\(=\dfrac{sin^2x-cos^4x}{cos^2x\cdot sin^2x}+\dfrac{cos^2x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x+cos^2x-cos^4x-sin^4x}{cos^2x\cdot sin^2x}\)

\(=\dfrac{1-\left(cos^2x+sin^2x\right)^2+2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}\)

\(=\dfrac{2\cdot cos^2x\cdot sin^2x}{cos^2x\cdot sin^2x}=2\)

NV
5 tháng 5 2021

\(\dfrac{1+cos2x-sin2x}{cos2x}=\dfrac{1+2cos^2x-1-2sinx.cosx}{cos^2x-sin^2x}=\dfrac{2cosx\left(cosx-sinx\right)}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)

\(=\dfrac{2cosx}{cosx+sinx}=\dfrac{2}{\dfrac{cosx}{cosx}+\dfrac{sinx}{cosx}}=\dfrac{2}{1+tanx}\)

NV
25 tháng 8 2020

b/ ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow\left(1-\frac{sinx}{cosx}\right)\left(1+sinx\right)=1+\frac{sinx}{cosx}\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(1+sinx\right)=sinx+cosx\)

\(\Leftrightarrow cosx+sinx.cosx-sinx-sin^2x=sinx+cosx\)

\(\Leftrightarrow sin^2x+2sinx-sinx.cosx=0\)

\(\Leftrightarrow sinx\left(sinx-cosx+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sinx-cosx=-2\left(1\right)\end{matrix}\right.\)

Xét \(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=-2\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\sqrt{2}< -1\) (vô nghiệm)

NV
25 tháng 8 2020

a/ ĐKXĐ: \(sin4x\ne0\)

\(\frac{sinx}{cosx}+\frac{cos2x}{sin2x}=\frac{2cos4x}{sin4x}\)

\(\Leftrightarrow2sin^2x.cos2x+2cos^22x=2cos4x\)

\(\Leftrightarrow\left(1-cos2x\right)cos2x+2cos^22x=4cos^22x-2\)

\(\Leftrightarrow3cos^22x-cos2x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\left(l\right)\\cos2x=-\frac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow2x=\pm arccos\left(-\frac{2}{3}\right)+k2\pi\)

\(\Leftrightarrow x=\pm\frac{1}{2}arccos\left(-\frac{2}{3}\right)+k\pi\)

7 tháng 11 2018

Chọn A.

Ta có C = (1-sin2x) cot2x + 1 - cot2x.

= (1 - sin2x - 1)  cot2x + 1

= -sin2x.cot2x + 1 = -cos2x + 1 = sin2x.

16 tháng 6 2021

    1 + sinx + cosx + sin2x + cos2x = 0

<=> sin^2x+ cos^2 x + ( sinx+cosx) + 2.sinx.cosx + ( cos^2 x - sin^2 x)=0

<=> 2 cos^2 x + 2sinx.cosx + sinx + cosx =0

<=> 2cosx ( cos x + sinx) + sinx + cosx = 0

<=> ( cosx + sinx ) (2 cos x + 1 ) = 0

<=> cosx + sinx = 0 hoặc 2cosx + 1 =0