chứng minh 4100-1chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(10^k-1=19n\left(n\in Nsao\right)\)
\(\Rightarrow10^k=19n+1\Rightarrow\left(10^k\right)^3=\left(19n+1\right)^3\Rightarrow10^{3k}-1=\left(19n\right)^3+38n\)
Ta thấy\(\left(19n\right)^3⋮19;38n⋮19\Rightarrow\left(19n\right)^3+38n⋮19\)
Hay\(10^{3k}-1⋮19\)
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
+ Cách 1:Do 6 chia 5 dư 1, mũ lên bao nhiẻu vẫn chia 5 dư 1
=> 6100 chia 5 dư 1
=> 6100 - 1 chia hết cho 5 ( đpcm)
+ Cách 2: Ta có:
6100 - 1 = (64)25 - 1 = (...6)25 - 1 = (...6) - 1 = (...5) chia hết cho 5
=> đpcm
Ta có :
6100 - 1
= (64)25 - 1 = .....6 - 1 = ....5 chia hết cho 5
Vậy 6100 - 1 chia hết cho 5 (ĐPCM)
Ủng hộ mk nha !!! ^_^
5 chia 4 dư 1
=>5n chia 4 dư 1
=>5n-1 chia 4 dư 1-1
=>5n 1 chia hết cho 4
Ta thấy:
9 đồng dư với 9(mod 10)
=>9 đồng dư với -1(mod 10)
=>911 đồng dư với (-1)11(mod 10)
=>911 đồng dư với -1(mod 10)
=>911+1 đồng dư với -1+1(mod 10)
=>911+1 đồng dư với 0(mod 10)
=>911+1 chia hết cho 10
=>ĐPCM
ta có : 9^11 = 9^8.9^3 = 9^2.4 . (...9) = (...1) . (...9) = (...9)
=> 9^11+1= ( ...9) + 1 =(...0) chia hết cho 10
vậy 9^11+1 chia hết cho 10
Sai đề rồi bạn, sửa lại đi
Ta có: 4100=44.25
=> 4100 có tận cùng là 6
=> 4100 - 1 có tận cùng là 5 sẽ chia hết cho 5 ^_^