K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

20 tháng 5 2019

a) Bất đẳng thức đúng khi a = b = 2c

do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)

xảy ra khi n = 1

Thật vậy, ta có :

\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)

\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

Vậy n nhỏ nhất là 1

b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)

Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)

\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)

do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)

\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)

13 tháng 6 2017

Áp dụng BĐT Bernoulli ta có:

\(\left(\frac{2x}{x+y}\right)^n=\left(1+\frac{x-y}{x+y}\right)^n\ge1+\frac{n\left(x-y\right)}{x+y}\)

\(\left(\frac{2y}{x+y}\right)^n=\left(1-\frac{x-y}{x+y}\right)^n\ge1-\frac{n\left(x-y\right)}{x+y}\)

Cộng theo vế 2 BĐT trên ta có: 

\(\left(\frac{2x}{x+y}\right)^n+\left(\frac{2y}{x+y}\right)^n\ge2\) Hay \(\frac{a^n+b^n}{2}\ge\left(\frac{a+b}{2}\right)^n\)

18 tháng 8 2019

\(2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\\ =\left(\frac{3}{a^2}+3b^2\right)+\left(\frac{3}{b^2}+3a^2\right)-\left(a^2+2ab+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+6\left(ab+ab+\frac{1}{a^2}+\frac{1}{b^2}\right)-10ab\)

Áp dụng bất đẳng thức Cô-si với 2 số không âm:

\(\Rightarrow2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\\ \ge2\sqrt{\frac{3}{a^2}\cdot3b^2}+2\sqrt{\frac{3}{b^2}\cdot3a^2}-\left(a+b\right)^2-6\left(\frac{a}{b}+\frac{b}{a}\right)+6\cdot4\sqrt{ab\cdot ab\cdot\frac{1}{a^2}\cdot\frac{1}{b^2}}-\frac{10\left(a+b\right)^2}{4}\\ =\frac{6b}{a}+\frac{6a}{b}-4-6\left(\frac{a}{b}+\frac{b}{a}\right)+24-10\\ =10\)

Dấu "=" xảy ra khi \(a=b=1\)

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:

Áp dụng BĐT AM-GM:

$2=a^2+b^2\geq 2ab\Rightarrow ab\leq 1(1)$

$(a+b)^2=a^2+b^2+2ab\leq 2+2.1\Rightarrow a+b\leq 2$

Áp dụng BĐT Bunhiacopxky:

$(a^3+b^3)(a+b)\geq (a^2+b^2)^2$

$\Rightarrow a^3+b^3\geq \frac{(a^2+b^2)^2}{a+b}=\frac{4}{a+b}\geq \frac{4}{2}=2(2)$

Do đó:

\((\frac{a}{b}+\frac{b}{a})(\frac{a}{b^2}+\frac{b}{a^2})=\frac{(a^2+b^2)(a^3+b^3)}{(ab)^3}=\frac{2(a^3+b^3)}{(ab)^3}\geq \frac{2.2}{1^3}=4\)

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=1$