cho x,y,z khacs0 thỏa mãn x^4=y^2.z^2=x^2.z^2 tính P=(x+y).(y+z).(z+x)/x.y.z
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Ta có : \(x^4=y^2.z^2=x^2.z^2\)
Từ đẳng thức trên :
\(\Rightarrow x^2=y^2\Leftrightarrow x=y\left(1\right)\)
Thay x = y vào đẳng thức x4 = y2 . z2 ta có :
\(\Rightarrow x^4=x^2.z^2\Rightarrow x^4:x^2=z^2\Rightarrow x^2=z^2\Leftrightarrow x=z\left(2\right)\)
Từ (1) và (2)
=>x = y = z
Thay y;z bằng x vào biểu thức P ta có :
\(\Rightarrow P=\frac{\left(x+y\right).\left(y+z\right).\left(z+x\right)}{x.y.z}\)
\(\Rightarrow P=\frac{\left(x+x\right)\left(x+x\right)\left(x+x\right)}{x.x.x}=\frac{2x^3}{x^3}=2\)
Vậy biểu thức P = 2