K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Có : AH/AA' = AH.(BA'+CA')/AA'.(BA'+CA') = 2S AHB + 2S AHC/2S ABC = S AHB + S AHC/S ABC

Tương tự : BH/BB' = S AHB + S BHC/S ABC

CH/CC' = S AHC + S CHB / S ABC

=> AH/AA' + BH/BB' + CH/CC' = 2.(S AHB + S AHC + S BHC/S ABC) = 2.1 = 2

=> ĐPCM

k mk nha

1 tháng 3 2020

A B C A' B' C' Hình vẽ chỉ mang tính chất minh họa

Ta có : \(\frac{AH}{AA'}=\frac{S_{ABH}}{S_{ABA'}}=\frac{S_{ACH}}{S_{ACA'}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\)   ( Tính chất dãy tỉ số bằng nhau, tỉ số diện tích )

Tương tự ta có :

\(\frac{BH}{BB'}=\frac{S_{AHB}+S_{BHC}}{S_{ABC}}\) , \(\frac{CH}{CC'}=\frac{S_{ACH}+S_{BHC}}{S_{SBC}}\)

Do đó :

\(\frac{AH}{AA'}+\frac{BH}{BB'}+\frac{CH}{CC'}=\frac{2\left(S_{ABH}+S_{AHC}+S_{BHC}\right)}{S_{ABC}}=\frac{2\cdot S_{ABC}}{S_{ABC}}=2\)

Vậy : \(\frac{AH}{AA'}+\frac{BH}{BB'}+\frac{CH}{CC'}=2\)

24 tháng 3 2016

+ Ta có

\(\frac{S_{HBC}}{S_{ABC}}+\frac{S_{HAC}}{S_{ABC}}+\frac{S_{HAB}}{S_{ABC}}=\frac{S_{HBC}+S_{HAC}+S_{HAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

+ Ta có

\(\frac{S_{HBC}}{S_{ABC}}=\frac{\frac{HA'.BC}{2}}{\frac{AA'.BC}{2}}=\frac{HA'}{AA'}\)

+Tương tự ta cũng có

\(\frac{S_{HAC}}{S_{ABC}}=\frac{HB'}{BB'}\)\(\frac{S_{HAB}}{S_{ABC}}=\frac{HC'}{CC'}\)

=> \(\frac{S_{HBC}}{S_{ABC}}+\frac{S_{HAC}}{S_{ABC}}+\frac{S_{HAB}}{S_{ABC}}=\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\) Là một hằng số

15 tháng 2 2017

Cho tam giác ABC vuông tại A biết AB=6,BC=10.đường cao AH .Gọi ED lần lượt là chân đường vuông góc kẻ từ H đến AC và AB 

a)Tính diện tích tam giác ABC

b)CM:AH=DE

c)kẻ chung tuyến AM của tam giác ABC .CM:AM vuông góc với DE

Gíup mình với mình.Mình đang rất cần

7 tháng 4 2019

Ban vao trang Đề thi HSG Toán 8 cấp huyện năm 2016-2017 Phòng GD&ĐT Củ Chi

9 tháng 3 2021

A B C C' A' B' H