K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2021

Viet: `x_1+x_2=2m+2`

`x_1x_2=m^2+m-1`

Có: `1/(x_1^2)+1/(x_2^2)`

`=(x_1^2+x_2^2)/(x_1^2 x_2^2)`

`=( (x_1+x_2)^2-2x_1x_2)/(x_1^2 x_2^2)`

`=((2m+2)^2-2(m^2+m-1))/((m^2+m-1)^2)`

`=(2m^2+6m+6)/(m^4+2m^3−m^2−2m+1)`

25 tháng 5 2021

e cần gấp ạ

 

 

12 tháng 7 2019

Giả sử phương trình đã cho có 2 nghiệm  x 1  và  x 2 , theo hệ thức Vi-ét ta có:

x 1  +  x 2  = -b/a = -[-2(m + 1)]/1 = 2(m + 1)/1 = 2(m + 1)

x 1 x 2  = c/a = ( m 2  + m - 1)/1 =  m 2  + m – 1

x 1 2 + x 2 2  =  x 1 + x 2 2  – 2 x 1 x 2  = 2 m + 2 2  – 2( m 2  + m – 1)

= 4 m 2  + 8m + 4 – 2 m 2  – 2m + 2 = 2 m 2  + 6m + 6

26 tháng 1 2022

a, Thay m = -2 ta được : 

x^2 + 6x + 3 = 0 

\(\Leftrightarrow x=-3+\sqrt{6};x=-3-\sqrt{6}\)

b, Để pt có 2 nghiệm 

\(\Delta'=\left(m-1\right)^2-\left(-m+1\right)=m^2-2m+1+m-1=m^2-m\)> 0 

Theo Viet : \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m+1\end{matrix}\right.\)

Ta có : \(\left(x_1+x_2\right)^2+5x_1x_2=9\)

\(\Leftrightarrow4\left(m-1\right)^2+5\left(-m+1\right)=9\)

\(\Leftrightarrow4m^2-8m+4-5m+5=9\Leftrightarrow4m^2-13m=0\)

\(\Leftrightarrow m\left(4m-13\right)=0\Leftrightarrow m=0\left(ktm\right);m=\dfrac{13}{4}\)(tm) 

26 tháng 1 2022

a, Thay  m=-2 vào pt ta có:
\(x^2-2\left(m-1\right)x-m+1=0\\ \Leftrightarrow x^2-2\left(-2-1\right)x-\left(-2\right)+1=0\\ \Leftrightarrow x^2+6x+3=0\\ \Leftrightarrow\left(x^2+6x+9\right)-6=0\\ \Leftrightarrow\left(x+3\right)^2-\sqrt{6^2}=0\\ \Leftrightarrow\left(x+3-\sqrt{6}\right)\left(x+3+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{6}\\x=-3-\sqrt{6}\end{matrix}\right.\)

 \(b,\Delta'=\left[-\left(m-1\right)\right]^2-\left(-m+1\right)\\ =m^2-2m+1+m-1\\ =m^2-m\)

Để pt có 2 nghiệm thì \(\) \(\Delta'\ge0\Leftrightarrow m^2-m\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m+1\end{matrix}\right.\)

\(x_1^2+x_2^2+7x_1x_2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2+5x_1x_2=9\\ \Leftrightarrow\left(2m-2\right)^2+5\left(-m+1\right)=9\\ \Leftrightarrow4m^2-8m+4-5m+5-9=0\\ \Leftrightarrow4m^2-13m=0\\ \Leftrightarrow m\left(4m-13\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=\dfrac{13}{4}\left(tm\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

Để PT có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m+1)^2-(m^2-1)>0\Leftrightarrow 2m+2>0\Leftrightarrow m>-1$

Áp dụng định lý Viet:

$x_1+x_2=2(m+1)$ và $x_1x_2=m^2-1$

Khi đó, để $x_1^2+x_2^2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2=3x_1x_2+8$

$\Leftrightarrow 4(m+1)^2=3(m^2-1)+8$

$\Leftrightarrow m^2+8m-1=0$

$\Leftrightarrow m=-4\pm \sqrt{17}$. Vì $m>-1$ nên $m=-4+\sqrt{17}$

8 tháng 6 2018

Đáp án A

NV
2 tháng 4 2023

a. Em tự giải

b.

\(\Delta'=\left(m-1\right)^2-\left(m^2-6\right)=-2m+7\)

Pt đã cho có 2 nghiệm khi: \(-2m+7\ge0\Rightarrow m\le\dfrac{7}{2}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-6\end{matrix}\right.\)

\(x_1^2+x_2^2=16\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=16\)

\(\Leftrightarrow4\left(m-1\right)^2-2\left(m^2-6\right)=16\)

\(\Leftrightarrow2m^2-8m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=4>\dfrac{7}{2}\left(loại\right)\end{matrix}\right.\)

Vậy \(m=0\)

NV
16 tháng 1 2021

\(\Delta=\left(m+1\right)^2-4\left(m^2-2m+2\right)=-3m^2+10m-7\ge0\)

\(\Rightarrow1\le m\le\dfrac{7}{3}\)

\(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m^2-2m+2\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(m+1\right)^2-2\left(m^2-2m+2\right)\)

\(=-m^2+6m-3\)

\(=\left(-m^2+6m-\dfrac{77}{9}\right)+\dfrac{50}{9}\)

\(=\left(\dfrac{11}{3}-m\right)\left(m-\dfrac{7}{3}\right)+\dfrac{50}{9}\le\dfrac{50}{9}\)

\(P_{max}=\dfrac{50}{9}\) khi \(m=\dfrac{7}{3}\)

a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)

\(=4m^2+8m+4-4m^2+8m+12\)

=16m+16

Để phương trình luôn có nghiệm thì 16m+16>=0

hay m>=-1

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)

\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)

\(\Leftrightarrow m^2+14m-15=0\)

=>(m+15)(m-1)=0

=>m=1

12 tháng 3 2022

undefined

NV
23 tháng 2 2021

\(\Delta=9-4\left(-m^2+m+2\right)=4m^2-4m+1=\left(2m-1\right)^2\)

Pt có 2 nghiệm pb khi \(m\ne\dfrac{1}{2}\)

Do vai trò của 2 nghiệm là như nhau, giả sử: \(\left\{{}\begin{matrix}x_1=\dfrac{3-\left(2m-1\right)}{2}=2-m\\x_2=\dfrac{3+2m-1}{2}=m+1\end{matrix}\right.\)

\(x_1^2+x_2^2=5\Leftrightarrow\left(2-m\right)^2+\left(m+1\right)^2=5\)

\(\Leftrightarrow m^2-m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

4 tháng 3 2022

a,để pt có nghiệm kép 

 \(\Delta=m^2-\left(m^2-m+1\right)=m-1=0\Leftrightarrow m=1\)

\(x_1=x_2=\dfrac{2m}{2}=m=1\)

b, để pt có nghiệm \(m\ge1\)

c, Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=6\)

Thay vào ta đc \(4m^2-4\left(m^2-m+1\right)=6\)

\(\Leftrightarrow4m=10\Leftrightarrow m=\dfrac{5}{2}\left(tm\right)\)