So sánh A vs B
A=\(\frac{7}{5}\) và B= \(\frac{7+n}{5+n}\) vs n e N*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
Ta có : \(\frac{1}{2}< \frac{2}{3}\); \(\frac{3}{4}< \frac{4}{5}\); \(\frac{5}{6}< \frac{6}{7}\); ... ; \(\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\)\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)hay M < N
b) M .N = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7...100.101}=\frac{1}{101}\)
c) vì M < N nên M. M < M . N = \(\frac{1}{101}\)\(< \frac{1}{100}\)
\(\Rightarrow M< \frac{1}{10}\)
A> \(\frac{10^n-2-2}{10^n-1-2}=\frac{10^n-4}{10^n-3}=B\)
=> A>B
\(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(7A=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(7A-A=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(6A=1-\frac{1}{7^{100}}< 1\)
\(A< \frac{1}{6}=\frac{7}{42}< \frac{7}{41}=C\)
=> \(A< C\)
\(B=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^n}+\frac{1}{7^{n+1}}\)
\(7B=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{n-1}}+\frac{1}{7^n}\)
\(7B-B=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{n-1}}+\frac{1}{7^n}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^n}+\frac{1}{7^{n+1}}\right)\)
\(6B=1-\frac{1}{7^{n+1}}< 1\)
\(B< \frac{1}{6}=\frac{7}{42}< \frac{7}{41}=C\)
a)Ta có: \(5^{36}=5^{3.12}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=11^{2.12}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125>121\Rightarrow125^{12}>121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)
b) Ta có: \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(20< 21\Rightarrow5^{20}< 5^{21}\)
\(\Rightarrow625^5< 125^7\)
c) Ta có: \(3^{2n}=\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
Vì \(9>8\Rightarrow9^n>8^n\)( do \(n>0\))
\(\Rightarrow3^{2n}>2^{3n}\)
d)Ta có: \(5^{23}=5.5^{22}< 6.5^{22}\)
\(\Rightarrow5^{23}< 6.5^{22}\)
a. 5^36=(5^3)^12
=125^12
11^24=(11^2)^12
= 121^12
Vì 125^12>121^12 nên 5^36>11^24
b. Ta có: 625^5 =(5^4)^5
= 5^20
125^7=(5^3)^7
= 5^21
Vì 5^20<5^21 nên 625^5<125^7
M=(1.3.5.7.....99)/(2.4.6.8.....100)
số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500
số số hạng của mẫu = (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550
--> M= 2500/2550 =50/51
Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N
Ta có: \(\frac{n}{n+1}< 1\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
\(\Rightarrow A< B\)
b. mình ko biết làm
c. mình cũng ko biết làm
d.Ta có :\(\frac{10^{1993}+1}{10^{1992}+1}>1\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}.10+10.1}{10^{1991}.10+10.1}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}+1}{10^{1991}+1}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt nhé