K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

h) Ta có: \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)

\(\frac{n+3}{n+4}=\frac{1}{n+4}\)

Vì \(n+2< n+4\)\(\Rightarrow\frac{1}{n+2}>\frac{1}{n+4}\)

\(\Rightarrow1-\frac{1}{n+2}< 1-\frac{1}{n+4}\)\(\Rightarrow\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

22 tháng 1 2018

M=(1.3.5.7.....99)/(2.4.6.8.....100)

số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500

số số hạng của mẫu =  (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550

-->  M= 2500/2550 =50/51

Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N

22 tháng 1 2018

bấm phân số kiểu j z bạn

12 tháng 5 2018

Sửa N=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)

12 tháng 5 2018

Ta có : \(\frac{1}{2}< \frac{2}{3}\)\(\frac{3}{4}< \frac{4}{5}\)\(\frac{5}{6}< \frac{6}{7}\); ... ; \(\frac{99}{100}< \frac{100}{101}\)

\(\Rightarrow\)\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)hay M < N

b) M .N = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7...100.101}=\frac{1}{101}\)

c) vì M < N nên M. M < M . N = \(\frac{1}{101}\)\(< \frac{1}{100}\)

\(\Rightarrow M< \frac{1}{10}\)

23 tháng 3 2015

bạn giải ra hộ mình nhé !

24 tháng 3 2015

a) M>N

b)M*N=1/101

c)bỏ cuộc 

Cách 1 :

Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)

          \(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)

Cộng theo từng vế ( 1) và ( 2 ) ta được :

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)

VẬY \(A>B\)

CÁCH 2

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)

   \(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)

VẬY A>B  

Chúc bạn học tốt ( -_- )

9 tháng 3 2017

\(\frac{n}{n+1}\)<\(\frac{n+2}{n+3}\) với n>=0