Cho điểm C trên ( O) , đường khính AB. Từ O vẽ đường thẳng song song với AC và cắt tiếp tyến tại C của (O) ở P
a) C/m: \(\Delta OBP=\Delta OCP\)
b) C/m: PB là tiếp tuyến của (o)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>OP vuông góc với BC
Ta có: ΔOBC cân tại O
mà OP là đường cao
nên OP là phân giác
Xét ΔOBP và ΔOCP có
OB=OC
góc BOP=góc COP
OP chung
Do đó: ΔOBP=ΔOCP
b: ΔOBP=ΔOCP
nên góc OBP=góc OCP=90 độ
=>PB là tiếp tuyến của (O)
a: Ta có: AC\(\perp\)CB
AC//OP
Do đó: OP\(\perp\)CB
mà ΔOBC cân tại O
nên OP là tia phân giác cua góc BOC
Xét ΔOBP và ΔOCP có
OB=OC
\(\widehat{BOP}=\widehat{COP}\)
OP chung
Do đó: ΔOBP=ΔOCP
b: Ta có: ΔOBP=ΔOCP
nên \(\widehat{OBP}=\widehat{OCP}=90^0\)
hay PB là tiếp tuyến của (O)
a) Vì OP//AC(gt)
=> \(\widehat{O_2}=\widehat{C_1}\) (cặp góc soletrong) (1)
\(\widehat{A_2}=\widehat{O_1}\) (cặp góc đồng vị) (2)
Xét ΔOAC có: OA=OC(gt)
=> ΔOAC cân tại O
=> \(\widehat{A_2}=\widehat{C_1}\) (3)
Từ (1);(2);(3) suy ra:
\(\widehat{O_1}=\widehat{O_2}\)
Xét ΔOBP và ΔOCP có:
OP: cạnh chung
\(\widehat{O_1}=\widehat{O_2}\left(cmt\right)\)
OB=OC(gt)
=> ΔOBP=ΔOCP(c.g.c)
b) Vì: ΔOBP=ΔOCP(cmt)
=> \(\widehat{OBP}=\widehat{OCP}\)
Mà: \(\widehat{OCP}=90^o\left(gt\right)\)
=> \(\widehat{OBP}=90^o\)
=>PB là tiếp tuyến của (O)
a ) Vì OP // AC (gt)
\(\Rightarrow\widehat{O_2}=\widehat{C_1}\) ( cặp góc so le trong ) (1)
\(\widehat{A}_2=\widehat{O}_1\) ( cặp goc đồng vị ) (2)
Xét \(\Delta OAC\) có : OA = OC (gt)
\(\Rightarrow\Delta OAC\) cân tại O
\(\Rightarrow\widehat{A}_2=\widehat{C}_1\) (3)
Từ (1) ; (2) ; (3) suy ra :
\(\widehat{O}_1=\widehat{O}_2\)
Xét \(\Delta OBP\) và \(\Delta OCP\) có :
OP : cạnh chung
\(\widehat{O}_1=\widehat{O}_2\left(cmt\right)\)
OB = OC (gt)
\(\Rightarrow\Delta OBP=\Delta OCP\left(cmt\right)\)
\(\Rightarrow\widehat{OBP}=\widehat{OCP}\)
Mà : \(\widehat{OCP}=90^o\) ( gt)
\(\Rightarrow\widehat{OBP}=90^o\)
\(\Rightarrow\) PB là tiếp tuyến của đt (O)
Chúc bạn học tốt !!!
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng