Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cm: OD là phân giác góc BOC
Nối C và B
Xét tam giác ABC có:
* C thuộc (O)
* AB là đường kính của (O)
=> tam giác ABC nội tiếp đường tròn tâm O, đường kính AB
=> tam giác ABC vuông tại C
=> AC vuông góc BC
Ta có: AC // OD (gt)
Mà AC vuông góc BC (cmt)
=> OD vuông góc BC
Xét tam giác OCB có:
* OC = OB (=R)
=> tam giác OCB cân tại O
Mà có OD là đường cao (OD vuông góc BC cmt)
=> OD cũng là phân giác góc BOC (tính chất)
b) Cm: CD là tiếp tuyến của đường tròn
Xét tam giác COD và tam giác BOD có:
* OC = OB (=R)
* góc COD = góc BOD (cmt ở câu a)
* OD là cạnh chung
=> tam giác COD = tam giác BOD (c-g-c)
=> góc OBD = góc OCD (góc tương ứng)
Mà góc OBD = 90 độ (BD là tiếp tuyến)
=> góc OCD = 90 độ
=> CD vuông góc OC
=> CD là tiếp tuyến đường tròn tâm O
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>OP vuông góc với BC
Ta có: ΔOBC cân tại O
mà OP là đường cao
nên OP là phân giác
Xét ΔOBP và ΔOCP có
OB=OC
góc BOP=góc COP
OP chung
Do đó: ΔOBP=ΔOCP
b: ΔOBP=ΔOCP
nên góc OBP=góc OCP=90 độ
=>PB là tiếp tuyến của (O)