K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2022

a,Xét \(\Delta AHB\) và \(\Delta BCD\) có :

\(\widehat{H}=\widehat{C}=90^0\)

\(\widehat{ABH}=\widehat{BDC}\left(ABCD\cdot là\cdot HCN,slt\right)\)

\(\Rightarrow\Delta AHB\sim\Delta BCD\left(g-g\right)\)

b, Ta có : \(\Delta AHB\sim\Delta BCD\left(cmt\right)\)

\(\Rightarrow\dfrac{AH}{BC}=\dfrac{HB}{DC}\)

\(\Rightarrow\dfrac{AH}{HB}=\dfrac{BC}{DC}\left(1\right)\)

Ta có : EC là phân giác \(\widehat{BCD}\)

\(\Rightarrow\dfrac{EB}{ED}=\dfrac{BC}{CD}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\dfrac{AH}{HB}=\dfrac{EB}{ED}\)

\(\Rightarrow AH.ED=HB.EB\left(ĐPCM\right)\)

c, Xét ΔABD vuông tại A, định lý Pi-ta-go ta được :

\(\Rightarrow BD=\sqrt{AD^2+AB^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

Xét \(\Delta HDA\) và \(\Delta ADB\) có  :

\(\widehat{A}=\widehat{AHB}=90^0\)

\(\widehat{D}:chung\)

\(\Rightarrow\Delta HDA\sim\Delta ADB\left(g-g\right)\)

\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AD}{BD}\)

hay \(\dfrac{AH}{4}=\dfrac{3}{5}\)

\(\Rightarrow AH=\dfrac{4.3}{5}=2,4\left(cm\right)\)

Xét ΔAHD vuông tại H, định lí Pi-ta-go ta được :

\(\Rightarrow DH=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)

Ta có : EC là phân giác \(\widehat{BCD}\)

\(\Rightarrow\dfrac{EB}{ED}=\dfrac{BC}{DC}\)

hay \(\dfrac{EB}{ED}=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{EB}{3}=\dfrac{ED}{4}=\dfrac{EB+ED}{3+4}=\dfrac{5}{7}\)

\(\Rightarrow EB=\dfrac{5}{7}.3=\dfrac{15}{7}\left(cm\right)\)

Ta có : \(EH=BD-DH-EB=5-1,8-\dfrac{15}{7}=\dfrac{37}{35}\) (cm)

\(\Rightarrow S_{AHE}=\dfrac{2,8.\dfrac{37}{35}}{2}=1,48\left(cm^2\right)\)

22 tháng 3 2022

a. Xét tg AHB và tg BCD

AHB^ = C^= 900

ABD^= BDC^ ( so le trong)

=> tam giác AHB đồng dạng với tam giác BCD ( g.g)

mà tam giác ADB đồng dạng với tam giác BCD 

=>Tam giác ABD và tam giác HBA đồng dạng

18 tháng 7 2021

Gấp gấp

13 tháng 5 2021

giúp mih đi mih đang làm bài kt

 

a: ΔABD vuông tại A

=>BD^2=AB^2+AD^2

=>BD=căn 8^2+15^2=17(cm)

Xét ΔABD vuông tại A có AH là đường cao

nên AH*BD=AB*AD

=>AH*17=15*8=120

=>AH=120/17(cm)

b: Xét ΔHDK vuông tại H và ΔHIB vuông tại H có

góc HDK=góc HIB

Do đó: ΔHDK đồng dạng với ΔHIB

=>HD/HI=HK/HB

=>HD*HB=HK*HI=HA^2

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc ABD chung

=>ΔABD đồng dạng với ΔHBA

b: BD=căn 3^2+4^2=5cm

HB=AB^2/BD=3,2cm

c: AD là phân giác

=>ED/EB=AD/AB

mà AD/AB=AH/BH

nên ED/EB=AH/BH

a: Xét ΔAHD vuông tại H và ΔBAD vuông tại A có

góc D chung

=>ΔAHD đồng dạng với ΔBAD

b; Xét ΔDEA vuông tại D và ΔADB vuông tại A có

góc DEA=góc ADB

=>ΔDEA đồng dạng với ΔADB

=>DE/AD=AD/AB

=>AD^2=DE*AB

c: AD^2=DE*AB

=>DE=3^2/4=2,25cm