Cho hình thang cân ABCD có AB//CD và DA=AB=BC. (K) là đường tròn đi qua A, B và tiếp xúc với AD, BC. P là một điểm thuộc (K) và nằm trong hình thang cân. PA, PB lần lượt cắt CD tại E, F. BE, BF lần lượt cắt AD, BC tại M, N. Chứng minh PM= PN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : EF//BC(gt)
\(\widehat{B}=\widehat{C}\)(tg ABC cân A)
=> BFEC là hình thang cân (đccm)
b) Do FI=IB (gt)
EK=KC(gt)
=> IK là đường trung bình của hthang BFEC
=> IK=(BC+EF):2
=> 7,5=(BC+EF):2
=> BC+EF=15
Mà \(FE=\frac{BC}{2}\)(EF là đường tb tg ABC)
=> EF=15:(1+2)x1=5cm
BC=5x2=10cm
- Có : BD=CD=BC:2=5cm
- Xét tg ABD vuông D (tg ABC cân, BD=DC=> AD vuông BC), có :
AB2=BD2+AD2 (pytago)
=>AB2=52+122
=> AB2=169
=> AB=13cm
- Có : FB=AB:2=6,5cm
- Tứ giác BFEC có : FB=EC=6,5cm
Chu vi BFEC là : EF+BC+FB+EC=5+10+6,5+6,5=28cm
Vậy:.....
#H
a) Xét tam giác ACD có: AF=FC (gt) ; DK=KC (gt)
=> FK là đường trung bình của tam giác ACD
=> FK//AD
=> ADKF là hình thang
Chứng minh tương tự t cũng có: ME là đường trung bình của tam giác ABD
=> ME // AD mà FK//AD (cmt)
=> ME//FK (1)
Chứng minh tương tự ta cũng có:
MF là đường trung bình tam giác ABC , EK là đường trung bình tam giác DBC
=> MF//BC ; EK // BC
=> MF//EK (2)
Từ (1) và (2) ta có: EMFK là hình bình hành