Tìm số tự nhiên a sao cho: a2 + 10a + 1964 là số chính phương?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
giả sử a^2+10a+1964=n^2 --> (a+5)^2+1939 =n^2 --> n^2-(a+5)^2=1939
(n-a-5)(n+a+5) =1939 =1.1939=7.277
n-a-5=1 (*) và n+a+5=1939 ) (**) hoặc n-a-5=7 (***) và n+a+5=277 (****)
Lấy (**) trừ (*) ta được 2a+10=1938, suy ra a1=964
trường hợp 2: lấy (****)-(***) ta được 2a+10=270; suy ra a2=130
Vậy có 2 giá trị a thỏa mãn là 130 và 964
Nguồn
đặt ab+4=x^2(xϵN)
→ab=x^2-4=(x-2)(x+2)
→b=\(\frac{\left(x-2\right)\left(x+2\right)}{a}=\frac{x-2}{a}.\left(x+2\right)\)
để b là số tự nhiên thì x-2 chia hết cho a
Ta chọn x-2=a
→b=a+4
Vậy với a ϵ N luôn tìm được số tự nhiên b sao cho ab+4 là số chính phương
Gỉa sử ab - 4 là x^2
Ta có
\(ab+4=x^2\)
\(\Rightarrow ab=x^2-2^2\)
\(\Rightarrow ab=\left(x+2\right)\left(x-2\right)\)
(+) Nếu a=x+2
=> b=x - 2
(+( Nếu a=x - 2
=> b=x+2
Vậy a ; b thỏa mãn \(\left(a;b\right)\in\left\{\left(x+2;x-2\right);\left(x-2;x+2\right)\right\}\) Với x là số tự nhiên
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
hui sài hằng đẳng thức thui
Bài khá dễ nhé bạn :
\(a^2+10a+25+1939=n^2\Rightarrow\left(a+5\right)^2+1939=n^2\Rightarrow\left(a+5-n\right)\left(a+5+n\right)=1939\)
\(\left(a+5-n\right)\left(a+5+n\right)=1.1939=7.277\)
Ta có 2 TH ( vì a+5+n > a+5 -n ) sau :
\(\hept{\begin{cases}a+5-n=1\\a+5+n=1939\end{cases}}\)và \(\hept{\begin{cases}a+5-n=7\\a+5+n=277\end{cases}}\)
TH1:
\(2a+10=1940\Rightarrow a=\frac{1940-10}{2}=965\)( loại khi thử lại )
TH2:
\(2a+10=284\Rightarrow a=137\)(loại khi thử lại )
Suy chẳng có số nào thõa mãn đề bài trên