(x^2+1).(x-5) nhỏ hơn hoặc bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : 12.1 < 20 ; 12.2 > 20 và 12.4 > 50 nên các số tự nhiên x sao cho : x thuộc B(12) và 20 nhỏ hơn hoặc bằng x lớn hơn hoặc bằng 50 là 24 , 36 , 48 .
b) ta có : 15.0 = 0 ; 15.1=15 > 0 và 15.2< 40 ; 15.3 > 40 nên các số tự nhiên x sao cho : x chia hết cho 15 và 0 < x < hoặc bằng 40 là 15 và 30
=> pt có 4 nc <=> m> 0
-33 < 5.x + 3 \(\le\)26
-36 < 5.x \(\le\) 23
\(\frac{-36}{5}< x\le\frac{23}{5}\)
-7,2 < x \(\le\)4,6
=> \(x\in\left\{-7;-6;-5;-4;...;4\right\}\)
=> có 14 số
a) x2 < 1 nên IxI < 1 <=> -1 < x < 1
b) \(2x+5\le7\)nên 2x\(\le2\)=> x\(\le1\)
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
a/ Giả sử: |x| + |y| < |x + y| => ( |x| + |y| )2 < ( |x + y|2) => x2 + 2 . |x| . |y| + y2 < x2 + 2xy + y2 => |x| . |y| < xy (Vô lý)
=> |x| + |y| \(\ge\) |x + y|
b/ Giả sử: |x| - |y| > |x - y| => ( |x| - |y| )2 > ( |x - y|2) => x2 - 2 . |x| . |y| + y2 < x2 - 2xy + y2 => - |x| . |y| > -xy (Vô lý)
=> |x| - |y| \(\le\) |x - y|
Cách 2:
a/ Giả sử: |x| + |y|\(\ge\)|x + y| => ( |x| + |y| )2 \(\ge\) ( |x + y|2) => x2 + 2 . |x| . |y| + y2 \(\ge\) x2 + 2xy + y2 => |x| . |y| \(\ge\) xy (Bất đẳng thức đúng)
Vậy |x| + |y| \(\ge\) |x + y|
b/ Giả sử: |x| - |y| \(\le\)|x - y| => ( |x| - |y| )2 \(\le\)( |x - y|2) => x2 - 2 . |x| . |y| + y2 \(\le\)x2 - 2xy + y2 => - |x| . |y| \(\le\) -xy (Bất đẳng thức đúng)
Vậy |x| - |y| \(\le\) |x - y|
\(a)\) Giả sử \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(\Leftrightarrow\)\(\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2\)
\(\Leftrightarrow\)\(\left|x\right|^2+2\left|xy\right|+\left|y\right|^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\)\(x^2+2\left|xy\right|+y^2\ge x^2+2xy+y^2\)
\(\Leftrightarrow\)\(2\left|xy\right|\ge2xy\)
\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng )
\(b)\) Giả sử \(\left|x\right|-\left|y\right|\le\left|x-y\right|\)
\(\Leftrightarrow\)\(\left(\left|x\right|-\left|y\right|\right)^2\le\left|x-y\right|^2\)
\(\Leftrightarrow\)\(\left|x\right|^2-2\left|xy\right|+\left|y\right|^2\le\left(x-y\right)^2\)
\(\Leftrightarrow\)\(x^2-2\left|xy\right|+y^2\le x^2-2xy+y^2\)
\(\Leftrightarrow\)\(-2\left|xy\right|\le-2xy\)
\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng )
Chúc bạn học tốt ~