Cho pt: \(\sqrt{x^2-4}=x-a\)
1. Giải PT a=2
2. giải và biện luận theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1\right)\Leftrightarrow\sqrt[3]{\left(x+1\right)^3}+m\sqrt{\left(x-2\right)^2}=2\)
\(\Leftrightarrow x+1+m\left|x-2\right|=2\) (2)
Xét \(x\ge2\)thì (2) \(\Leftrightarrow x+1+m\left(x-2\right)=2\)
\(\Leftrightarrow\left(m+1\right)x=2m+1\)(3)
Nếu m = -1 thì (3) vô nghiệm
m khác -1 thì (3) có nghiệm x = \(\frac{2m+1}{m+1}\)
Vì \(x\ge2\)nên \(\frac{2m+1}{m+1}\ge2\Leftrightarrow\frac{2m+1}{m+1}-2\ge0\)
\(\Leftrightarrow m< -1\)
Nếu m < -1 thì phương trình có nghiệm \(\frac{2m+1}{m+1}\)
m > -1 phương trình vô nghiệm
m = -1 , \(x=\frac{3}{2}\)
Xét x < 2 thì (2) <=> x + 1 - m(x - 2) = 2
<=> (1-m)x = 1-2m (4)
Nếu m = 1 thì (4) vô nghiệm
m khác 1 (4) có nghiệm \(x=\frac{1-2m}{1-m}\)
Vì \(\frac{1-2m}{1-m}< 2\Leftrightarrow m< 1\)
KL : nếu m < -1 : \(x=\frac{2m+1}{m+1}\)
(x-2)^2 sai nhé thằng óc lz ????? copyy bài người khac nhưng éo để ý đề à ??? -4 éo phải +4
Nói chung đề thế nào cũng làm được nhưng nghe có vẻ nó ngang thôi
\(m^2x+3m-2=m+x\left(1\right)\)
\(\Leftrightarrow\left(m^2-1\right)x+3m-2=0\)
nếu m=+-1 \(\Leftrightarrow0.x+-3-2=0\Rightarrow vonghiem\)
nếu m khác +-1 phương trình luôn có nghiệm duy nhất
\(x=\frac{2-3m}{m^2-1}\)
a) \(x_0>0\Rightarrow\frac{2-3m}{m^2-1}>0\Rightarrow\orbr{\begin{cases}m< -1\\\frac{2}{3}< m< 1\end{cases}}\)
b) pt vô nghiệm khi m=+-1
có nghiệm duy nhất x=....khi m khác +-1
a. Pt trên là pt bậc nhất↔ m-1≠≠ 0
⇔ m≠≠ 1
b. +Với m-1=0 ⇔m=1 pt trên⇔0x=2m-1 (pt vô nghiệm)
+Với m-1≠≠ 0⇔m≠≠ 1 pt trên ⇔x=2m−1m−12m−1m−1
Kết luận :Với m=1 ptvn , với m≠≠ 1 pt có nghiệm duy nhất x=2m−1m−1
\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)
\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)
\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)