N=4/2.4+4/4.6+4/6.8+...+4/2014.2016(giải chi tiết và cho mik xin công thức tính nhé)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\frac{4}{2.4}+\frac{4}{4.6}+..+\frac{4}{2014.2016}\)
\(N=\frac{4}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+..+\frac{1}{2014.2016}\right)\)
\(N=2\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(N=\frac{2}{2}-\frac{2}{2016}=1-\frac{2}{2016}\)
\(N=\frac{2014}{2016}\)
Bn bấm máy rút gọn nhé
\(A=\frac{4}{2.4}+\frac{4}{4.6}+...+\frac{4}{2014.2016}=\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1015056}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1007}-\frac{1}{1008}\)
\(=1-\frac{1}{1008}=\frac{1007}{1008}\)
\(=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2014.2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=2.\frac{1007}{2016}\)
\(=\frac{2007}{1008}\)
giải:
4/2.4+4/4.6+4/6.8+...+4/2012.2014+4/2014.2016
=2.(2/2.4+2/4.6+2/6.8+...+2/2012.2014+2/2014.2016
=2.(1/2-1/4+1,4-1/6+1/6-1/8+...+1/2012-1/2014+1/2014-1/2016)
=2.(1/2-1/2016)
=2.1007/2016
=1007/1008
xong rùi đó
\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+....+\frac{4}{2014.2016}\)
\(=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2014.2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
\(=2.\frac{1007}{2016}=\frac{1007}{1008}\)
\(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2014.2016}\)
\(A=\frac{4}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2014.2016}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{2016}\right)=2.\frac{1007}{2016}=\frac{1007}{1008}\)
F = 2.(2/2.4 + 2/4.6 +......+ 2/2014.2016)
F = 2.(1/2 - 1/4 + 1/4 - 1/6 +.......+1/2014 - 1/2016)
F = 2.(1/2 - 1/2016)
F = 2 . 1007/2016
F = 2014/2016
Ủng hộ nhé!
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2014}-\frac{1}{2016}\)\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
=1/1x2+1/2x3+1/3x4+...+1/1006x1007+1/1007x1008
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/1006-1/1007+1/1007-1/1008
=1/1-1/1008
=1007/1008
~-~:33
mình ko chép lại đề nhé, sửa 2014 + 2016 thành 2014.2016
\(A=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2014}-\dfrac{1}{2016}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2016}\right)=2\left(\dfrac{2016-2}{6032}\right)=\dfrac{2.2018}{6032}=\dfrac{4036}{6032}=\dfrac{1009}{1508}\)
\(A=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2014.2016}\)
\(=2\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2014.2016}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2014}-\dfrac{1}{2016}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2016}\right)\)
\(=2.\dfrac{1007}{2016}=\dfrac{1007}{1008}\)
\(N=\dfrac{4}{2.4}+\dfrac{4}{4.6}+\dfrac{4}{6.8}+...+\dfrac{4}{2014.2016}\)
\(=2\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2014.2016}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2014}-\dfrac{1}{2016}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{2016}\right)\)
\(=2\left(\dfrac{1008}{2016}-\dfrac{1}{2016}\right)\)
\(=2.\dfrac{1007}{2016}=\dfrac{1007}{1008}\)
Công thức đây bạn:
\(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)