Cho hai số nguyên a,b thỏa mãn 5a+8b chia hết cho 3. Chứng minh -a+2b chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(5a+2b⋮7\Rightarrow2\left(5a+2b\right)=10a+4b⋮7\)
\(7a⋮7\)
\(\Rightarrow10a+4b-7a=3a+4b⋮7\)
Ta có : ( 2a + 7b ) + ( 4a + 2b ) = 6a + 9b
=> ( 6a + 9b ) - ( 2a + 7b ) = 4a + 2b
Mà 6a + 9b và 2a + 7b chia hết cho 3 nên 4a + 2b chia hết cho 3
5a + 8b ⋮ 3
6a - a + 6b + 2b ⋮ 3
(6a + 6b) + (-a + 2b) ⋮ 3
6(a + b) + (-a + 2b) ⋮ 3
6(a + b)⋮ 3
⇒ - a + 2b ⋮ 3 (tính chất chia hết của một tổng)
b; 5a + 8b ⋮ 3
2.(5a + 8b) ⋮ 3
10a + 16b ⋮ 3
10a + b + 15b ⋮ 3
15b ⋮ 3
⇒ 10a + b ⋮ 3 (tính chất chia hết của một tổng)
Để 5a + 3b và 13a + 8b chia hết cho 2016 thì
5a chia hết cho 2016 và 3b chia hết cho 2016
<=> 13a chia hết 2016 và 8b chia hết 2016
Ta có : 2016 không chia hết cho 5,
=> Nếu a và b không chia hết cho 2016 thì 5a + 3b không chia hết cho 2016 (a)
Ta có : 2016 không chia hết cho 13
=> Nếu a và b không chia hết cho 2016 thì 13a + 8b không chia hết cho 2016 (b)
Từ (a) và (b) Ta chứng minh được a và b chia hết cho 2016
Ta có:
5a + 8b ⋮ 3
Vì 6a; 6b ⋮ 3
⇒ (5a + 8b) ⋮ 3
⇒ (6a - a + 6b + 2b) ⋮ 3
⇒ [(6a + 6b) + (-a + 2b )] ⋮ 3
Mà 6a + 6b = 6(a + b) ⋮ 3
⇒ (-a + 2b) ⋮ 3
Vậy (-a + 2b) ⋮ 3