CÍU
Cho x;y;z thoả mãn 2x-3y/5= 3y-4z/6=4z-2x/7 . Hãy chứng tỏ rằng x/18=y/12=z/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-4\sqrt{x-4}}=1\) (ĐKXĐ: \(x\ge4\))
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}\right)^2-2\cdot\sqrt{x-4}\cdot2+2^2}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}-2\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-4}-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}-2=1\\\sqrt{x-4}-2=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=3\\\sqrt{x-4}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=9\\x-4=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=13\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{13;5\right\}\).
#\(Toru\)
\(\dfrac{1}{\left(x^2+4x+3\right)^3}=\dfrac{1}{\left(x+1\right)^3\left(x+3\right)^3}\)
Phân tích hệ số bất định:
\(=\dfrac{a_1}{x+1}+\dfrac{a_2}{\left(x+1\right)^2}+\dfrac{a_3}{\left(x+1\right)^3}+\dfrac{b_1}{x+3}+\dfrac{b_2}{\left(x+3\right)^2}+\dfrac{b_3}{\left(x+3\right)^3}\)
Cách phân tích thứ 2:
\(=\dfrac{a\left(x+2\right)}{x^2+4x+3}+\dfrac{b\left(x+2\right)}{\left(x^2+4x+3\right)^2}+\dfrac{c}{x+1}+\dfrac{d}{x+3}\)
À mà cách thứ 2 hình như ko đúng, bậc ko đảm bảo
Bài này mẫu số hơi đặc biệt nên có thể ko cần máy móc như vậy:
\(\left(\dfrac{1}{\left(x+1\right)\left(x+3\right)}\right)^3=\dfrac{1}{8}\left(\dfrac{1}{x+1}-\dfrac{1}{x+3}\right)^3\)
Khai triển nó ra có vẻ dễ thực hiện hơn
Kiên nhẫn đi :)
Trên thực tế, những bài kiểu này ko cần quan tâm, vì ko ai cho cả
Yah, em có mấy vấn đề thắc mắc đây ạ:
-Phân tích hệ số bất định là phải dựa vô mũ của biểu thức đó đúng ko ạ? Mũ 2 thì phân tích thành 2 biểu thức mẫu mũ 1 và mẫu mũ 2, mũ 3 thì phân tích thành 3 biểu thức mẫu mũ 1, mẫu mũ 2 và mẫu mũ 3. Em hiểu như thế có đk nhỉ?
-Sao anh lại phân tích cái mẫu ra thành [(x+1)(x+3)]^3 được ạ? Ko lẽ lại do kinh nghiệm :>
-Với cả nếu giờ cái mũ kia nó ko là mũ 3 nữa mà mũ 3, mũ 5,.. mũ n thì phân tích như nào ạ :>
Sương sương vầy đã ạ
a) x20 = x
=> x20 - x = 0
=> x(x19 - 1) = 0
=> \(\orbr{\begin{cases}x=0\\x^{19}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x^{19}=1^{19}\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy x = 0 hoặc x = 1
b) 3x + 2 - 5.3x = 36
=> 3x . 32 - 5.3x = 36
=> 3x.9 - 5.3x = 36
=> 3x.(9 - 5) = 36
=> 3x.4 = 36
=> 3x = 9
=> 3x = 32
=> x = 2
Vậy x = 2
\(a,\text{ }x^{20}=x\)
\(x^{20}-x=0\)
\(x\left(x^{19}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^{19}-1=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\x^{19}=0+1=1\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)
(x)+Q(x)=(x3-2x+1)+(2x2 -2x3+x-5)
=x3-2x+1+2x2-2x3+x-5 = -x3+2x2-x-4
P(x)-Q(x)=(x3-2x+1)+(2x2-2x3+x-5)
=x3-2x+1-2x2+2x3-x+5
=3x3-2x2-3x+6
\(x-y-z=0\Leftrightarrow\left\{{}\begin{matrix}x-z=y\\y-x=-z\\y+z=x\end{matrix}\right.\)
\(A=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)=\dfrac{x-z}{x}.\dfrac{y-x}{y}.\dfrac{y+z}{z}=\dfrac{y}{x}.\dfrac{-z}{y}.\dfrac{x}{z}=-1\)
\(2^5.x+3y=32x+3y⋮7\)
Ta có
\(35x+14y⋮7\)
\(\Rightarrow\left(35x+14y\right)-\left(32x+3y\right)=3x+11y⋮7\)
1 was repaired
2 Was - bought
3 are watered
4 wasn't learned
5 was watched
6 Is - read
7 was stolen
8 was broken
9 wasn't cut
10 is cleaned
\(a,A⋮3\Leftrightarrow x⋮3\\ b,A⋮9\Leftrightarrow x:9dư3\)