Tìm x thuộc Z để x^2 + x + 5 chia hết cho x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép chia đơn thức ta có :
4x3 + 11x2 + 5x + 5 : x + 2 dư 7
Để 4x3 + 11x2 + 5x + 5 ⋮ x + 2 thì 7 ⋮ x + 2
=> x + 2 ∈ Ư(7) = { 1; 7; -1; -7 }
Ta có bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
Vậy để 4x3 + 11x2 + 5x + 5 ⋮ x + 2 thì 7 ⋮ x + 2 thì x ∈ { -9; -3; -1; 5 }
x + 7 chia hết cho x - 3
= (x - 3 + 10) chia hết cho (x - 3)
Vì (x - 3) chia hết cho (x - 3) nên 10 chia hết cho (x - 3)
=> x - 3 thuộc Ư(10)
x - 3 thuộc 1,2,5,10
=> x thuộc 4,5,8,13
Để 4x+5 chia hết cho x^2+1 thì \(\frac{4x+5}{x^2+1}\in Z\Rightarrow\frac{\left(4x-5\right)\left(4x+5\right)}{x^2+1}\in Z\Rightarrow\frac{16x^2-25}{x^2+1}=\frac{16x^2+16-41}{x^2+1}=16+-\frac{41}{x^2+1}\in Z\)
\(\Rightarrow x^2+1\inƯ\left(41\right)\Rightarrow\orbr{\begin{cases}x^2+1=41\\x^2+1=1\end{cases}}\Rightarrow x=0\)
Thử lại thấy giá trị 0 hợp lý
Vậy x=0
x+1 chia hết cho x-5 <=> x+1/x-5 thuộc Z <=> <x-5>+6/x-5 thuộc Z <=> 6/x-5 thuộc Z
<=> 6 chia hết cho x-5 <=>x-5 thuộc Ư<6>= <-6;-3;-2;-1;1;2;3;6>
x-5 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | -1 | 2 | 3 | 4 | 6 | 7 | 8 | 11 |
Vậy..................................................
a) \(3x+24⋮x-4\)
\(\Rightarrow3x+24-3\left(x-4\right)⋮x-4\)
\(\Rightarrow3x+24-3x+12⋮x-4\)
\(\Rightarrow36⋮x-4\)
\(\Rightarrow x-4\in\left\{-1;1;-2;2;-3;3;-4;4;-9;9;-12;12;-18;18;-36;36\right\}\)
\(\Rightarrow x\in\left\{3;5;2;6;1;7;0;8;-5;13;-8;16;-14;22;-32;40\right\}\left(x\in Z\right)\)
b) \(x^2+5⋮x+1\)
\(\Rightarrow x^2+5-x\left(x+1\right)⋮x+1\)
\(\Rightarrow x^2+5-x^2-x⋮x+1\)
\(\Rightarrow5-x⋮x+1\)
\(\Rightarrow5-x+\left(x+1\right)⋮x+1\)
\(\Rightarrow5-x+x+1⋮x+1\)
\(\Rightarrow6⋮x+1\)
\(\Rightarrow x+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1;-4;2;-7;5\right\}\left(x\in Z\right)\)
Bài cuối tương tự bạn tự làm nhé, thanks!
\(a,x-5⋮x+2\)
\(\Rightarrow x+2-7⋮x+2\)
\(\Rightarrow x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x + 2 = 1=> x = -1
x + 2 = -1 => x = -3
.... tương tự nhé ~
\(2x+3⋮x-5\)
\(\Rightarrow2x-10+7⋮x-5\)
\(\Rightarrow2\left(x-5\right)+7⋮x-5\)
\(\Rightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x - 5 = 1 => x = 6
....
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
(\(x^{2^{ }}\) + \(x+5\)) ⋮ (\(x+1\))
[(\(x^2\) + \(x\)) + 5] ⋮ (\(x+1\))
[\(x\left(x+1\right)\) + 5] ⋮(\(x+1\))
5 ⋮ (\(x+1\))
(\(x+1\)) \(\in\) Ư(5) = {-5; -1; 1; 5}
lập bảng ta có:
Theo bảng trên ta có
\(x\) \(\in\) {-6; -2; 0; 4}