K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

A B C D E F M a b

a) Ta có AD là phân giác ^BAC, DE và DF lần lượt vuông góc AB;AC nên DE=DF

Xét \(\Delta\)AFD vuông tại F có ^DAF=1/2^BAC=600 => ^ADF=300

Tương tự tính được: ^ADE=300 = >^ADF+^ADE=^EDF=600

Xét \(\Delta\)DEF: ^EDF=600; DE=DF => \(\Delta\)DEF là tam giác đều.

b) Dễ thấy ^CAM=1800-^BAC=600.

CM // AD => ^ACM=^DAC=1/2^BAC=600

Từ đó suy ra \(\Delta\)ACM là tam giác đều.

c) Do \(\Delta\)ACM đều => CM=AC => CM-CF=CA-CF=AF

=> a - b = AF. Lại có: Tam giác AFD là tam giác nửa đều => AF=1/2AD

=> a - b = 1/2AD => AD= 2(a - b).

Vậy .........

27 tháng 11 2017

a. Do AD là phân giác BAC

=> BAD=CAD=1/2BAC=1/2.120=60*

Xét tam giác AED có 

EAD+EDA+AED=180*

60*+EDA+90*=180*

=> EDA=30*

Xét tam giác EAD và tam giác FAD có

AED=AFD=90*

AD chung

EAD=FAD=60*

=> tam giác EAD = tam giác FAD(ch-gn)

=> ED=FD; EDA=FDA=30*

Ta có EDF=EDA+FDA=2EDA=2.30*=60*

Từ ED=FD => tam giác EDF cân tại D

Xét tam giác cân DEF có EDF=60*

=> tam giác DEF là tam giác đều

18 tháng 7 2021

undefined

Vậy ΔDEF đều

b) Vì AD là tia phân giác của ∠BAC (gt)

⇒ ∠DAB = ∠DAC = 1/2∠BAC = 60o

Vì AD//MC (gt)

⇒ ∠AMC = ∠DAB = 60o (hai góc nằm ở vị trí đồng vị)

∠AMC = ∠CAD = 60o (hai góc nằm ở vị trí so le trong)

Xét ΔAMC có:

Hai góc bằng nhau và bằng 60o 

⇒ ΔAMC đều

Vậy ΔAMC đều

Còn lại bạn tự làm nhé

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.