K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2016

mình cũng đang gửi một câu hỏi giống của bạn

30 tháng 7 2017

AD là phân giác của ∠BAC 
=> ∠DAE = ∠DAF = ∠BAC = 60⁰ 
△DAE = △DAF (trường hợp cạnh huyền cạnh góc vuông) 
=> DE = DF 
=> △DEF cân ở D 
△ADE vuông ở E => ∠EAD + ∠EDA = 90⁰ 
=> ∠EDA = 30⁰ 
tương tự ∠FDA = 30⁰ 
=> ∠FDE = 60⁰ 
=> △DEF đều 
b, △DEI và △DFK có 
DE = DF 
∠DEI = ∠DFK = 90⁰ 
EI = FK 
=> △DEI = △DFK 
=> DI = DK 
=> △DIK cân ở D 
c, ∠BAC + ∠MAC = 180⁰ (kề bù) 
=> ∠MAC = 180⁰ - 120⁰ = 60⁰ 
AD//MC => ∠MCA = ∠CAD = 60⁰ 
=> △ACM đều 
tính AD 
***c/m : trong tam giác vuông có góc 60⁰ thì cạnh góc vuông kề với góc đó bằng nửa cạnh huyền 
thật vậy 
xét trong △ABC vuông ở A có ∠ACB = 60⁰ 
gọi E là trung điểm của BC 
trên tia đối của tia EA lấy D sao cho AE = ED 
xét △ABE và △DCE có 
BE = CE 
∠AEB = ∠DEC (đối đỉnh) 
AE = DE 
=> △ABE = △DCE 
=> ∠ABE = ∠DCE và AB = CD 
=> AB//CD 
=> CD ┴ AC 
△BAC = △DCA (cgc) 
=> BC = DA 
=> AE = BC/2 = EC 
=> △AEC cân ở E 
∠ACE = 60⁰ 
=> △AEC đều 
=> AC = AE = BC/2 
=> đpc/m 
***áp dụng bài toán trên => AF = AD/2 
△AMC đều => AC = MC = m 
=> AF = AC - CF = m - n 
=> AD = 2(m - n)

26 tháng 11 2021

 

Lý thuyết: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

 

 

 

26 tháng 11 2021

uk

a: Xét tứ giác AEMF có

góc AEM=góc AFM=góc FAE=90 độ

nên AEMF là hình chữ nhật

b: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)

 

19 tháng 1 2022

tam giác AED là tam giác vuông 

vì có DE vuông góc AB và có 3 cạnh : AE,ED,DA nối với nhau

13 tháng 12 2020

a/ Tứ giác AKDH có:

^BAC = ^AKD = ^AHD = 90° (GT).

=>AKDH là hình chữ nhật

b/ Áp dụng định lí Pythagoras vào ∆ABC vuông tại A có:

BC^2=AB^2+AC^2.

=>BC^2=9+16=25

=> BC = 5 (cm)

Xét ∆ABC vuông tại A có AD là đường trung tuyến.

=>AD = 1/2BC=2,5 (cm)

b/ Có:

DK vuông góc vs AB.

AB vuông góc vs AC.

=> DK // AC.

Xét ∆ABC có:

DK // AC, K thuộc AB.

D là trung điểm BC.

=> K là trung điểm AB (đ/l)

=> KD là đường trung bình ∆ABC

=> KD = 1/2AC=1,5(cm)

S_(∆ABC)=1/2.KD.AB

=1/2.4.1,5

=2.1,5=3 (cm²)