Chứng tỏ rằng A=5+5²+5³+...+5¹⁴chia hết cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=5(1+5)+53(1+5)+...+5199(1+5)
=(1+5)(5+53+....+5199) chia hết cho 6
b) A:31 dư 30 hay A-30 chia hết cho 31
Ta có A=5(1+5+52)+54(1+5+52)+57(1+5+52)+.....+598(1+5+52)
31(5+54+57+...+599) chia hết cho 31. Nên A chia cho 31 không dư
Ra A= 5^11-5^3
Vì 5^11chia hết 125
5^3 chia hết cho125
=> 5^11-5^3 chia hết cho125
A = 5 + 52 + 53 + ... + 512
A = (5 + 52) + (53 + 54) + ... + (511 + 512)
A = 30 + 52(5 + 52) + ... + 510(5 + 52)
A = 30 + 52.30 + ... + 510.30
A = 30(1 + 52 + ... + 510)
Vì 30(1 + 52 + ... + 510) chia hết cho 30 => A chia hết cho 30 (đpcm)
A = 5 + 52 + 53 + ... + 512
A = (5 + 52 + 53) + ... + (510 + 511 + 512)
A = 5(1 + 5 + 52) + ... + 510(1 + 5 + 52)
A = 5.31 + ... + 510.31
A = 31(5 + ... + 510)
Vì 31(5 + ... + 510) chia hết cho 31 => A chia hết cho 31 (đpcm)
Ta có :
\(A=5+5^2+5^3+...+5^{12}\)
\(A=(5+5^2+5^3)+...+(5^{10}+5^{11}+5^{12})\)
\(A=5(1+5+5^2)+...+5^{10}(1+5+5^2)\)
\(A=5.31+...+5^{10}.31\)
\(A=(5+...+5^{10}).31\) chia hết cho 31
Ta có ;
\(A=5+5^2+5^3+...+5^{12}\)
\(A=5(1+5+5^2+...+5^{11})\) chia hết cho 5 ( 1 )
Ta lại có :
\(A=5+5^2+5^3+...+5^{12}\)
\(A=(5+5^2)+(5^3+5^4)+...+(5^{11}+5^{12})\)
\(A=5(1+5)+5^3(1+5)+...+5^{11}(1+5)\)
\(A=5.6+5^3.6+...+5^{11}.6\)
\(A=(5+5^3...+5^{11}).6\) chia hết cho 6 ( 2 )
Từ ( 1 ) và ( 2 ) ta có ;
\(A=5+5^2+5^3+...+5^{12}\) chia hết cho 5 và 6
=> \(A=5+5^2+5^3+...+5^{12}\)chia hết cho 30
\(5+5^2+5^3+...5^{29}+5^{30}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{29}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{29}.6⋮6\)
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllldddddd
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeegggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppvvvvvvvpppppppppppppppppppppppppppppppppppppvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccczzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadddddddddddddddddddddddddddddddddddddddddddddddddddddkkkkkkkkkk
lozzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
a) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{97}.31\)
\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
b) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)
\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)
\(=5+5.30+5^3.30+...+5^{97}.30\)
\(=5+30.\left(5+5^3+...+5^{97}\right)\)
Mà \(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)
c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)
\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)
\(4S=5^{100}-5\)
\(\Rightarrow25^x-5=5^{100}-5\)
\(\Rightarrow25^x=5^{100}\)
\(\Rightarrow25^x=25^{50}\)
\(\Rightarrow x=50\)
Ta có :5+5^2+5^3+...+5^29+5^30
=(5+5^2)+(5^3+5^4)+.....+(5^29+5^30)
=(5+5^2)+5^2(5+5^2)+.....+5^28(5+5^2)
=30+5^2.30+.....+5^28.30
Vì 30 chia hết cho 6 =>30+5^2.30+.....+5^28.30 chia hết cho 6
hay 5+5^2+5^3+...+5^29+5^30 chia hết cho 6
Ta có: \(A=5+5^2+...+5^{14}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{13}+5^{14}\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{12}\left(5+5^2\right)\)
\(=\left(5+5^2\right)\left(1+5^2+...+5^{12}\right)\)
\(=30\cdot\left(1+5^2+...+5^{12}\right)⋮30\)
Bổ sung cho Thịnh:
Xét dãy số 1; 2; 3;...;14 dãy số này là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số: (14 - 1) : 1 + 1 = 14
vì 14 : 2 = 7
Vậy nhóm hai số hạng liên tiếp của A vào ta được:
Làm như Thịnh