K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hôm qua

(\(x\) - 1) = 2 - \(x\)

\(x-1\) = 2 - \(x\)

\(x+x\) = 2 + 1

 2\(x\)   = 3

   \(x=\dfrac{3}{2}\)

Vậy \(x=\dfrac{3}{2}\) 

20 tháng 3 2022

a) PT bậc nhất một ẩn là: x-2=0; 4-0,2x=0
b) Giải:
x-2=0     (*)
⟺ x=-2
Vậy tập nghiệm của pt (*) là S={-2}
 4-0,2x=0    (**)
⟺-0,2x=-4
⟺x=-4/-0,2=20
Vậy tập nghiệm của pt (**) là S={20}

15 tháng 10 2016

x(x+1)(x2+x+1)=42

<=> x4 + 2x3 + 2x2 + x - 42 = 0

<=> (x4 - 2x3) + (4x3 - 8x2) + (10x2 - 20x) + (21x - 42) = 0

<=> (x - 2)(x3 + 4x2 + 10x + 21) = 0

<=> (x - 2)[(x3 + 3x2) + (x2 + 3x) + (7x + 21)] = 0

<=> (x - 2)(x + 3)(x2 + x + 7) = 0

<=> \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

15 tháng 10 2016

lớp 8 nha

a: Phương trình có dạng ax+b=0 khi a<>0 được gọi là phương trình bậc nhất một ẩn

Phương trình 2x-5=2x+3 là phương trình bậc nhất một ẩn

c: Hai phương trình tương đương là hai phương trình có cùng tập nghiệm

Các pt a,c,d và pt bậc nhất 1 ẩn

a: a=1; b=2

c: a=-2; b=1

d: a=3; b=0

25 tháng 1 2022

a,c

25 tháng 3 2020

\(\frac{x-1}{x+1}-\frac{x^2+x-2}{x+1}=\frac{x+1}{x-1}-x-2\)

<=> \(\frac{x-1}{x+1}-\frac{\left(x-1\right)\left(x+2\right)}{x+1}=\frac{x+1}{x-1}-x-2\)

<=> \(\frac{x-1-\left(x-1\right)\left(x+1\right)}{x+1}=\frac{x+1}{x-1}-x-2\)

<=> \(\frac{-\left(x-1\right)\left(x+2-1\right)}{x+1}=\frac{x+1}{x-1}-x-2\)

<=> -(x - 1) = \(\frac{x+1}{x-1}\) - x - 2

<=> 1 - x = \(\frac{x+1}{x-1}\) - x - 2

<=> 1 = \(\frac{x+1}{x-1}\) - x - 2

<=> x - 1 = x + 1 - 2(x - 1)

<=> x - 1 = -x + 3

<=> x = 3 - x - 1

<=> x = 2 - x

<=> x + x = 2

<=> 2x = 2

<=> x = 1

10 tháng 1 2022

y = 0 có phải là phương trình bậc nhất 1 ẩn ( khoông)

0.x + 5 = 0 có phải là phương trình bậc nhất 1 ẩn( phải)

-t - 2 = 0 có phải là phương trình bậc nhất 1 ẩn( không)

1: Hai phương trình gọi là tương đương khi chúng có chung tập nghiệm

2: Phương trình bậc nhất một ẩn là phương trình có dạng ax+b=0(a<>0), với a,b là các số thực

1 tháng 8 2015

>                                                

AH
Akai Haruma
Giáo viên
28 tháng 9

Lời giải:
Để PT là PT bậc nhất 1 ẩn thì:

$m^2-m+1\neq 0$

$\Leftrightarrow (m-\frac{1}{2})^2+\frac{3}{4}>0$ 

Điều này luôn đúng với mọi $m\in\mathbb{R}$ do $(m-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}>0$ với mọi $m\in\mathbb{R}$
Vậy có vô số số thực $m$ thỏa mãn điều kiện đề.

1: Hai phương trình gọi là tương đương khi chúng có chung tập nghiệm

2: Phương trình bậc nhất một ẩn là phương trình có dạng ax+b=0(a<>0), với a,b là các số thực

7 tháng 3 2022

Tham Khao :

1. 

a. Định nghĩa: Hai phương trình gọi là tương đương nếu chúng có cùng một tập hợp nghiệm.

 

[CHUẨN NHẤT] Thế nào là hai phương trình tương đương

 

 

b. Hai quy tắc biến đổi tương đương các phương trình: 

[CHUẨN NHẤT] Thế nào là hai phương trình tương đương (ảnh 2)