K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

Cách 1

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách 2

6 tháng 9 2019

Cách 1

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cách 2

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9 

Giải bài 17 trang 16 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Giải hệ phương trình  ta làm như sau:

Bước 1: Bước 1: Từ một phương trình (coi là phương trình thứ nhất), ta biểu diễn x theo y (hoặc y theo x) ta được phương trình (*). Sau đó, ta thế (*) vào phương trình thứ hai để được một phương trình mới ( chỉ còn một ẩn).

Bước 2: Dùng phương trình mới ấy thay thế cho phương trình thứ hai, phương trình (*) thay thế cho phương trình thứ nhất của hệ ta được hệ phương trình mới tương đương .

Bước 3: Giải hệ phương trình mới ta tìm được nghiệm của hệ phương trình.

23 tháng 11 2017

x 2 - y 3 = 1 1 5 x - 8 y = 3 2

Từ (1) ta rút ra được : Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9 (*)

Thế (*) vào phương trình (2) ta được :

Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Thay x = 3 vào (*) ta suy ra Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

14 tháng 2 2022

F=10x7y12

14 tháng 2 2022

\(F=25x^4y^6.8x^3y^6=200x^7y^{12}\)

25 tháng 6 2018

Bài toán giải hệ phương trình bằng phương pháp thế có 2 cách trình bày.

Cách 1:

Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) ta rút ra được y = 3 2 x − 11 2  (*)

Thế (*) vào phương trình (2) ta được :

Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Thay x = 7 vào (*) ta suy ra  y = 3 2 ⋅ 7 − 11 2 = 5

Vậy hệ phương trình có nghiệm duy nhất (7 ; 5).

Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Từ (1) ta rút ra được : y = 3 2 x − 3  (*)

Thế (*) vào phương trình (2) ta được :

Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Thay x = 3 vào (*) ta suy ra 

Vậy hệ phương trình có nghiệm duy nhất (3; 3/2)

Cách 2:

Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (7; 5).

Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (3; 3/2)

Kiến thức áp dụng

Giải hệ phương trình Giải bài 12 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9 ta làm như sau:

Bước 1: Từ một phương trình (coi là phương trình thứ nhất), ta biểu diễn x theo y (hoặc y theo x) ta được phương trình (*). Sau đó, ta thế (*) vào phương trình thứ hai để được một phương trình mới ( chỉ còn một ẩn).

Bước 2: Dùng phương trình mới ấy thay thế cho phương trình thứ hai, phương trình (*) thay thế cho phương trình thứ nhất của hệ ta được hệ phương trình mới tương đương .

Bước 3: Giải hệ phương trình mới ta tìm được nghiệm của hệ phương trình.

14 tháng 11 2021

\(VT=\dfrac{2x^2+2xy+xy+y^2}{x^2\left(2x+y\right)-y^2\left(2x+y\right)}=\dfrac{2x\left(x+y\right)+y\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\\ =\dfrac{\left(2x+y\right)\left(x+y\right)}{\left(2x+y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}=VP\)

16 tháng 10 2019

x 3 + 4 y = y 3 + 16 x 1 + y 2 = 5 ( 1 + x 2 ) ( 1 )

– Xét x = 0, hệ (I) trở thành  4 y = y 3 y 2 = 4 < = > y = ± 2

– Xét x ≠ 0, đặt  y x = t < = > y = x t . Hệ (I) trở thành

x 3 + 4 x t = x 3 t 3 + 16 x 1 + x 2 t 2 = 5 ( 1 + x 2 ) < = > x 3 ( t 3 − 1 ) = 4 x t − 16 x x 2 ( t 2 − 5 ) = 4 < = > x 3 ( t 3 − 1 ) = 4 x ( t − 4 ) ( 1 ) 4 = x 2 ( t 2 − 5 ) ( 2 )

 

Nhân từng vế của (1) và (2), ta được phương trình hệ quả

4 x 3 ( t 3 − 1 ) = 4 x 3 ( t − 4 ) ( t 2 − 5 ) < = > t 3 − 1 = t 3 − 4 t 2 − 5 t + 20     (Do x ≠ 0) <=>4t 2 + 5 t − 21 = 0 < = > t = − 3 t = 7 4

+ Với t = – 3, thay vào (2) được x2 = 1 x = ±1.

x = 1 thì y = –3, thử lại (1;–3) là một nghiệm của (I)

x = –1 thì y = 3, thử lại (–1;3) là một nghiệm của (I)

+ Với t = 7/4 , thay vào (2) được  x 2 = − 64 31 (loại)

 

Vậy hệ (I) có các nghiệm (0;2), (0;–2), (1;–3), (–1;3).

10 tháng 12 2018

Đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

4 tháng 5 2017

Đáp án D

23 tháng 1 2017

Ta có

x 2 − y 3 = 1 x + y 3 = 2 ⇔ x 2 − y 3 = 1 x 2 + y 6 = 2 ⇔ x 2 − y 3 = 1 6 + 3 y = 1 ⇔ x 2 − y 3 = 1 y = 1 6 + 3 ⇔ y = 6 − 3 3 x 2 − 3 . 6 − 3 3 = 1 ⇔ y = 6 − 3 3 x = 1

Vậy hệ đã cho có nghiệm duy nhất ( x ;   y )   = 1 ; 6 − 3 3  

Đáp án: D