K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 7 2021

Áp dụng định lý Pitago: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)

Hệ thức lượng:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=7,2\left(cm\right)\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\)

\(CH=BC-BH=9,6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot15=9\cdot12=108\)

hay AH=7,2(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=15(cm)

28 tháng 6 2015
Vì ABC là tam giác vuông nên vuông tại A=>Chiều cao AH=4 cm. 100% tic đúng nha <.>