(2x(x+y))/(2xy) = (x+y)/y có bằng nhau không
giải thích
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(2x^3-x^2y+x^2+y^2-2xy-y=0\)
\(\Leftrightarrow x^2\left(2x-y+1\right)-y\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(2x-y+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-y=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=x^2\\y=2x+1\end{matrix}\right.\)
Thế vào pt đầu:
\(\left[{}\begin{matrix}x^3+x-2=0\\x\left(2x+1\right)+x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x^2+x+2\right)=0\\x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
\(x^2-2xy+x=-y\)
Thế vào \(y^2\) ở pt dưới:
\(x^2\left(x^2-4y+3\right)+\left(x^2-2xy+x\right)^2=0\)
\(\Leftrightarrow x^2\left(x^2-4y+3\right)+x^2\left(x-2y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x^2-4y+3+\left(x-2y+1\right)^2=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x^2-4xy+2x+4y^2-8y+4=0\)
\(\Leftrightarrow2\left(x^2-2xy+x\right)+4y^2-8y+4=0\)
\(\Leftrightarrow-2y+4y^2-8y+4=0\)
\(\Leftrightarrow...\)
a) Ta có: \(x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
b) Ta có: \(2x+2y-x^2-xy\)
\(=2\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x\right)\)
c) Ta có: \(x^2-25+y^2+2xy\)
\(=\left(x+y\right)^2-25\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
d) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
f) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
a)\(2x^2+3x+5=0\)
\(\Leftrightarrow4x^2+6x+10=0\)
\(\Leftrightarrow\left(2x\right)^2+2.2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}=0\)
\(\Leftrightarrow\left(2x+\dfrac{3}{2}\right)^2=-\dfrac{31}{4}\left(vn\right)\)
b) PT \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=-1\left(vn\right)\) ( do \(VT\ge0\forall x,y\) )
c) PT \(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2+2x-6y+10=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1+y^2-4y+4+5=0\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=-5\left(vn\right)\)
Vậy PT vô nghiệm
a: 2x^2+3x+5=0
=>x^2+3/2x+5/2=0
=>x^2+2*x*3/4+9/16+31/16=0
=>(x+3/4)^2+31/16=0(vô lý)
b: x^2-2x+y^2-4y+6=0
=>x^2-2x+1+y^2-4y+4+1=0
=>(x-1)^2+(y-2)^2+1=0(vô lý)
\(\frac{x^2-2xy+y^2}{x+y}=\frac{P}{x^2-y^2}\)
\(\frac{\left(x-y\right)^2}{x+y}=\frac{P}{\left(x-y\right)\left(x+y\right)}\)
\(P=\frac{\left(x-y\right)^3\left(x+y\right)}{x+y}=\left(x-y\right)^3\)
\(\left\{{}\begin{matrix}x^2+y^2=2xy+x-y+2\\2x^2+3y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-2xy-x+y-2=0\\2x^2+3y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2-\left(x-y\right)-2=0\\2x^2+3y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+1\right)\left(x-y-2\right)=0\\2x^2+3y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}y=x+1\\x=y+2\end{matrix}\right.\\2x^2+3y^2=21\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}y=x+1\\2x^2+3\left(x+1\right)^2=21\end{matrix}\right.\Leftrightarrow...\)
TH2: \(\left\{{}\begin{matrix}x=y+2\\2\left(y+2\right)^2+3y^2=21\end{matrix}\right.\Leftrightarrow...\)
EZ game
Xét x=y=0
Xét x và y khác 0
Cộng từng vế hai phương trình
Đánh giá VP >= VT
Từ 2 PT ta được:
\(\Leftrightarrow x^2-x^2y+y^2-y^2x=x-2xy+y\\ \Leftrightarrow\left(x+y\right)^2-xy\left(x+y\right)-\left(x+y\right)=0\\ \Leftrightarrow\left(x+y\right)\left(x+y-xy-1\right)=0\\ \Leftrightarrow\left(x+y\right)\left(1-y\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+y=0\\y=1\\x=1\end{matrix}\right.\)
Với \(x+y=0\Leftrightarrow x=-y\Leftrightarrow-y+2y^2+y=3\Leftrightarrow y^2=\dfrac{3}{2}\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{\sqrt{6}}{2}\Leftrightarrow x=-\dfrac{\sqrt{6}}{2}\\y=-\dfrac{\sqrt{6}}{2}\Leftrightarrow x=\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)
Với \(y=1\Leftrightarrow x-2x+1=3\Leftrightarrow x=-2\)
Với \(x=1\Leftrightarrow1-2y+y=3\Leftrightarrow y=-2\)
Vậy \(\left(x;y\right)\in\left\{\left(-2;1\right);\left(1;-2\right);\left(\dfrac{\sqrt{6}}{2};-\dfrac{\sqrt{6}}{2}\right);\left(-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\right)\right\}\)
Ta có:
\(\dfrac{x-y}{x^3+y^3}\cdot A=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}\left(x\ne\pm y\right)\)
\(\Leftrightarrow\dfrac{x-y}{\left(x+y\right)\left(x^2-xy+y^2\right)}\cdot A=\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\)
\(\Leftrightarrow A\cdot\left(x-y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\cdot\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\)
\(\Leftrightarrow A\cdot\left(x-y\right)=\left(x+y\right)\left(x-y\right)^2\)
\(\Leftrightarrow A=\dfrac{\left(x+y\right)\left(x-y\right)^2}{x-y}\)
\(\Leftrightarrow A=\left(x+y\right)\left(x-y\right)\)
\(\Leftrightarrow A=x^2-y^2\)
\(\dfrac{2x\left(x+y\right)}{2xy}=\dfrac{x+y}{y}\left(DK:x,y\ne0\right)\)
- Chia cả tử số và mẫu số cho 2x khác 0